

Little Crow Solar Park, Scunthorpe

ENVIRONMENTAL STATEMENT: TECHNICAL APPENDICES

APPENDIX 3.3

GEOTECHNICAL AND PHASE II CONTAMINATION REPORT

Revision: APFP Reg: PINS Reference: Submission 5(2)(a) EN010101

Author: Date: Integral November 2020

On behalf of INRG Solar (Little Crow) Ltd

	Document									
Document P	Document Properties									
Prepared By		Integral								
Title			Environmental Statement: Technical Appendices – Appendix 3.3 Geotechnical and Phase II Contamination Report							
Document R	eference	7.5 LC TA3.3								
Version Histe	ory									
Date	Version	Version Status Description/Changes								
	ļ									

Geotechnical and Phase II Contamination Report Proposed Solar Energy Scheme Little Crow Solar Park Scunthorpe Lincolnshire DN20 0BG

Client: INRG Solar (Little Crow) Limited

Intégrale Report No. 1997/02, Version 5, November 2020, Submission

		Signature/Date
Project Co-ordinator & Report Preparation:	Joseph Begaj	
Mentor Consultant, Advice & Report Approved by:	Dr Kay Boreland	
Final Check by:	Kay Boreland	

This report is addressed to and may be relied upon by the following:

INRG Solar (Little Crow) Limited,

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

LIST OF CONTENTS

- EXECUTIVE SUMMARY -

1.0	INTRODUCTION	1
	1.1 General 1.2 Timescales and Limitations	1 1
2.0	THE SITE	3
	2.1 General Summary2.2 Regulators' Initial Comments	3 4
3.0	GROUND INVESTIGATION	6
	 3.1 Trial Pitting 3.2 Soakaway and Infiltrometer Tests 3.3 Windowless Sample Boreholes 3.4 Groundwater and Soils Gas Standpipe Installations and Monitoring 3.5 Geotechnical Laboratory Testing 3.6 Contamination Analyses 3.7 Referencing 	6 6 7 7 8 9
4.0	GROUND & GROUNDWATER CONDITIONS	10
	 4.1 Summary of Strata Encountered 4.2 Groundwater 4.3 Ground Gas Regime 4.4 Strata Properties 4.4.1 Made Ground / Topsoil 4.4.2 Superficial Deposits 4.4.3 Inferior Oolite Group 4.4.4 Weathered Lias Group 4.4.5 Lias Mudstones and Ironstones 4.4.6 Coleby Mudstone and Marlstone Rock Bed 	10 12 13 14 14 15 16 16 17 18
5.0	GEOTECHNICAL CONSIDERATIONS	19
	 5.1 Scheme Details & Structural Loadings 5.2 Site Preparation and Earthworks 5.3 Foundations, Ground Floor Slabs and Other Infrastructure 5.3.1 Typical Ground Conditions 5.3.2 Design Bearing Pressures for Spread Footings 5.3.3 Shallow Pin Piles 5.3.4 Ground Slabs 5.3.5 Formations and Inspections 5.4 Pavement Design 5.5 Protection of Buried Concrete 5.6 Drainage Considerations	19 19 20 21 21 22 22 22 23 23 23

6.0	GEN	IERIC C	QUANTITATIVE CONTAMINATION ASSESSMENT	25
	6.1	Summ	nary of Soils Results with Respect to Human Health	25
	6.2	Summ	nary of Soils Results with Respect to Phytotoxicity	25
	6.3	Summ	nary of Soils Results with Respect to WRAS	25
	6.4	Contro	olled Waters	26
		6.4.1	Conceptual Model	26
		6.4.2	Summary of Leachate Results	26
	6.5	Gas M	litigation	27
	6.6	Conce	ptual Exposure Model & Risk Assessment	27
	6.7	Recon	nmendations	28
		6.7.1	For Protection of Human Health	28
		6.7.2	For Protection of Groundwater / Surface Water	28
		6.7.3	For Protection of Building Materials & Services	28
		6.7.4	For Protection of New Vegetation	28
		6.7.5	Reuse and Disposal of Surplus Spoil	28
		6.7.6	Recommended Further Action	28

FIGURES

- 1. Exploratory Hole Location Plan
- 2. TRL Probe Location Plan

APPENDICES

- A. Site Location
- B. Site Description / Photographs
- C. Additional Desk Study Information
- D. Trial Pit Logs
- E. Borehole Logs
- F. In-Situ Testing (Permeability & CBRs)
- G. Gas & Groundwater Monitoring
- H. Results of Geotechnical Laboratory Testing
- I. Results of Contamination Analyses
- J. Proposed Redevelopment

Tel: 01275 333036 www.integrale.uk.com

EXECUTIVE SUMMARY Geotechnical and Phase II Contaminated Land Report Little Crow Solar Park

INRG Solar (Little Crow) Limited are considering the construction, operation, maintenance and decommissioning of a ground mounted solar park with an intended design capacity of over 50MWp (megawatts peak) with associated development.

The 225 hectare site comprises a higher eastern area of level or gently eastward sloping arable land, a central zone moderately sloping down to the west, and a lower western area of very gentle to level ground. Agricultural soils predominate, with small areas of woodland & vegetation. To the west of the site are opencast ironstone workings and steel works.

Geological records indicate the lower slopes overlain by thick Blown Sand. The bedrock forms a sequence of north-south outcrops. The higher eastern area comprises Jurassic limestones; the central area is underlain by Jurassic mudstones and locally limestones; the middle and lower slopes are blanketed in the Blown Sand, underlain by mudstones and marls, including the commercially important Pecten Ironstone. The complete site area is classified as freely draining slightly acid sandy soils.

Trial pitting and boreholes have confirmed the anticipated ground conditions and found little evidence of former ironstone working, but with localised minor backfilling in the extreme southwest area. Groundwater stands below 2m in the higher area, at 1-1.5m centrally and at 0.5-1m depth in the lower area. Ditches in the lower area held water during late winter.

The ground gas regime is near normal, with elevated carbon dioxide where the Alluvium is peaty.

Design bearing pressures are given for shallow spread foundations for the limited structures proposed. Design CBR values are given for the access roads and hardstanding areas. The superficial silty sands will require care to prevent erosion and run-off. Soakage testing confirmed the majority of rainfall infiltration will soak away rapidly.

Contamination assessment concludes that any new water pipes require protection against chemical attack. Carbon dioxide could pose a risk to groundworkers if any confined space working is undertaken. No protective measures are considered necessary for in-ground plant. No contaminants were proven in excess of acceptance criteria adopted or human health protection. No evidence of significant leachable contamination has been found.

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Intégrale is a trading name of Integrale Limited. Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX United Kingdom Company Registration No. 2855366 England VAT Reg. No. 609 7402 37

1.0 INTRODUCTION

1.1 General

INRG Solar (Little Crow) Limited are considering the construction, operation, maintenance and decommissioning of a ground mounted solar park with an intended design capacity of over 50MWp (megawatts peak) with associated development. Their planning consultants are Pegasus Planning Group.

Integrale Limited (Intégrale) have been commissioned to undertake a ground investigation and complete a Geotechnical and Phase II Contamination Report. The investigation scope was determined by Intégrale in liaison with the client. The previous Phase 1 Desk Study [Document Ref 7.4 LC TA3.2] was originally issued to North Lincolnshire Council Environmental Health section and the Environment Agency in September 2018. Their comments have been taken into account in scoping this intrusive investigation.

This interpretative report summarises the Phase 1 Desk Study, describes the scope of fieldworks, laboratory investigations and monitoring, discusses the ground and groundwater conditions encountered, and gives advice on foundations and other specific geotechnical aspects.

The results of contamination analyses and generic quantitative risk assessment are reported and used to update the conceptual model of pollutant linkages. Potential implications for the development are discussed and recommendations for remedial works and design measures given.

1.2 Timescales and Limitations

The Phase 1 Desk Study was originally undertaken in August 2017 and a Version 1 draft report prepared. As the project has progressed the desk study has been updated and was issued to North Lincolnshire Council Environmental Health section and the Environment Agency in September 2018. Their comments were taken into account in scoping the intrusive investigations which are reported here.

The original desk study was completed without a site visit, and was therefore based on photographic and satellite imagery, mapping and data reports by others. Site visits were then completed during September and November 2018 to undertake the fieldworks and intrusive investigation reported here, and both documents updated where appropriate, based on those site visits.

The siteworks were undertaken across predominantly arable land with growing crops. Some initial trial pitting was timed prior to seeding in September 2018, and subsequent fieldwork in November 2018 was located around field margins, or between crop 'tramlines'. Investigation has been located across the various geological zones, to provide an overall assessment of ground conditions.

Gas and groundwater monitoring were completed between October 2018 and March 2019, so represent the complete autumn and winter periods. The standpipes have since been cut down below ground level and the headworks removed to preclude damage to farming equipment.

2.0 THE SITE

2.1 General Summary

A Phase I Ground Conditions Desk Study (Intégrale Report No. 1844, Version 8, October 2020, Submission) [Document Ref 7.4 LC TA3.2] has been completed, which should be read alongside this report. For completeness, the executive summary is reproduced below:

"A Phase 1 Desk Study on ground conditions, geotechnical and contamination aspects for this proposed solar energy scheme has been completed.

The 225 hectare site comprises a higher eastern area of level or gently eastward sloping arable land, a central zone moderately sloping down to the west, and a lower western area of very gentle to level ground. Agricultural soils predominate, with small areas of woodland & vegetation. To the west of the site are opencast ironstone workings and steel works

Geological records indicate the lower slopes overlain by Blown Sand comprising up to 7m of fine-grained silty sand. The bedrock beneath forms a sequence of north-south outcrops. The higher eastern area comprises Jurassic limestones; the central area is underlain by Jurassic mudstones and locally limestones; the middle and lower slopes are blanketed in the Blown Sand, underlain by mudstones and marls, including the commercially important Pecten Ironstone. The complete site area is classified as freely draining slightly acid sandy soils.

There are potentially small-scale surface ironstone workings in the lower western area. Northeast of the site is the Broughton B1 conventional oil well trial, sunk to 1.9km depth in 1984. This Report includes additional information on the well site, subsequent to the scoping direction by the Planning Inspectorate.

Historically the majority of site has remained agricultural, with Gokewell Priory Farm in the north. Overhead power cable routes cross the site and mapping indicates periodic expansion of the ironstone workings and steel plant to the west. A former WWII anti-aircraft battery in the eastern area is reported removed.

In the higher area, the regional strata dip to the east directs surface water and moderate depth groundwater flow to the east, forming a Principal Aquifer. Midslope surface water and shallow groundwater flow within the Blown Sand is to the west, forming a Secondary A Aquifer, with a discontinuous springline midslope. Very shallow groundwater is anticipated in the lower western area where drainage ditches are frequent, with hummocky marshy areas.

Potential contaminant sources are considered limited to remnant metals in soils within any localised backfilled ironstone pits, and air-borne particulates from the industrial complex to the west, within topsoil.

Potential receptors comprise construction workers and maintenance staff. Drainage ditches and the groundwater within the Principal and Secondary A aquifers are controlled waters receptors. For the limited groundworks, risk to groundworkers is considered negligible with standard protection.

The shallow groundworks will have negligible potential to cause or increase leaching. Run-off during construction works will need to be controlled and managed, as standard practice. Future run-off is unlikely due to predominant topsoil cover and anticipated infiltration characteristics but requires consideration.

Combined geotechnical and contaminated land assessment should concentrate on specific features from historical maps to confirm ground conditions within solar panel array zones, occurrence of small scale ironstone working, typical gas regime, infiltration and permeability of near surface soils and identify any specific areas of concern.

There is no current evidence of ground conditions that would preclude development".

During the 2018 site visits, supplementary photographs were taken with typical views included in Appendix B.

2.2 Regulators' Initial Comments

The Phase 1 Ground Conditions Desk Study was issued in 2018 to both the Environment Agency (EA) and North Lincolnshire Council for comment on the report and the proposed ground investigations. Their responses are included in Appendix C.

The EA are in agreement with the initial conceptual site model and proposed investigations. However, they require further phased contamination investigation (presumably dependent on the initial findings). The EA have provided a draft of their likely requirements for the Development Consent Order. The scope of investigation undertaken in 2018 took account of the regulators responses.

The Local Authority also agreed on the scope of investigation and overall approach as well as advising the developer about the potential for historical ironstone 'gullets' (deep, linear quarries) and mine shafts.

The Phase 1 Desk Study includes additional information on the off-site conventional oil well, as requested by the Planning Inspectorate in their 2019 responses.

3.0 GROUND INVESTIGATION

In view of the anticipated ground conditions, current site layout and proposed redevelopment, the following scope of investigation was completed. The locations were based on the desk study findings to give a broad spread across anticipated variations in ground conditions and to target potential historical ironstone workings.

3.1 Trial Pitting

23 No. trial pits were mechanically excavated using a wheeled JCB 3CX on 12th September and between 25th and 27th September 2018. The targeted trial pit locations chosen by Intégrale are shown on Figure 1 and were referenced as TP1-21, with two further trial pit locations, TP5A and TP22, selected whilst works were ongoing. Specific locations were agreed to limit disturbance within the agricultural fields. The general procedures adopted during trial pitting, together with the detailed trial pit records are included in Appendix D. The red outline given in Figure 1 is indicative of the study area and does not represent the <u>Order Limits</u>.

3.2 Soakaway and Infiltrometer Tests

9 No. soakaway tests were carried out in roughly 0.3x0.3m hand dug trial pits alongside the investigative trial pitting at TP1, TP7-10, TP13-14, TP17-19 and TP21 along with 5 No. dual ring infiltrometer tests undertaken in surface soils at TP2, TP5A, TP11 and TP15-16. The soakaways and infiltrometer rings were filled from containers and the fall in water level measured over time. General procedures adopted during soakaway and infiltrometer testing together with the associated records are included in Appendix F and discussed in Section 5.

3.3 Windowless Sample Boreholes

10 No. boreholes were sunk using a tracked windowless sample rig between 14th and 15th November 2018. The targeted borehole locations were chosen by Intégrale following the preliminary ground investigation in order to further investigate four areas of interest within the site as follows:

- Area 1 proposed Substation Building & Compound (Work No. 4): boreholes required for strength testing of the soils for geotechnical advice and bearing pressures;
- Area 2 proposed Battery Energy Storage System (Work No. 2A)*: boreholes with standpipe installations to monitor the winter water level;
- Area 3 northwest site area: borehole with a standpipe installation to monitor any ground gases generated by the peaty deposits proven during earlier trial pitting;
- Area 4 southwest site area: boreholes to prove the extent of the Made Ground encountered during the previous trial pitting.

*The potential alternative Battery Energy Storage System location (Work No. 2B) north of the proposed Substation Compound was not known in 2018 and no specific investigation undertaken there, although similar ground conditions to the Substation area are anticipated.

Little Crow Solar Park, Scunthorpe, DN20 0BG 1997/02, Vers.5, November 2020, Submission

Borehole locations are detailed on Figure 1 and were referenced WS1-8, with two further locations, WS4A and WS9, selected whilst the works were ongoing.

3.4 Groundwater and Soils Gas Standpipe Installations and Monitoring

Standpipes were installed in trial pits TP5-7, TP9-10 and TP5A, typically to 2m depth, and also in boreholes WS1-3, WS5 and WS7-9, typically between 2m and 3m depth. Monitoring was undertaken on 4 and 3 No. occasions for the trial pit and borehole standpipes respectively. The monitoring visits were completed between October 2018 and March 2019. The results are included in Appendix G, together with the general procedures adopted for installing standpipes.

3.5 Geotechnical Laboratory Testing

A schedule of complementary soils testing was prepared by Intégrale. The physical tests were completed in accordance with BS 1377 (1990) by Southwest Geotechnical Limited and the chemical testing by Chemtest Limited. The results are provided in Appendices H and I and the following shows the testing strategy:

Location	Depth (m)	Stratum	Testing	Criteria for test selection
TP1	0.5	Blown Sand	BRE (Reduced) Suite	Concrete classification
TP1	1.8	WLG	Natural Moisture Content, Atterberg Limits	Strata characteristics and classification
TP2	0.2	Topsoil	Particle Size Distribution*	Strata classification
TP2	1.2	WLG	BRE (Reduced) Suite	Concrete classification
TP4	0.3	Topsoil	Particle Size Distribution*	Strata classification
TP4	2.3	WLG	Natural Moisture Content, Atterberg Limits	Strata characteristics and classification
TP8	0.8	WLG	Natural Moisture Content, Atterberg Limits	Strata characteristics and classification
TP9	0.8	Blown Sand	Particle Size Distribution*	Strata classification
TP10	0.5	Blown Sand	Particle Size Distribution*	Strata classification
TP11	0.2	Topsoil	Particle Size Distribution*	Strata classification
TP15	0.5	WLG	BRE (Reduced) Suite	Concrete classification

7

TP16	0.2	Topsoil	Particle Size Distribution*	Strata classification
TP19	0.2	Topsoil	Particle Size Distribution*	Strata classification
TP20	0.4	Topsoil	Particle Size Distribution*	Strata classification
TP22	1.0	WIOG	BRE (Reduced) Suite	Concrete classification

Note: WLG – Weathered Lias Group; WIOG – Weathered Inferior Oolite Group * For all PSDs, both a wet sieve and sedimentation by pipette were completed.

3.6 Contamination Analyses

In view of the desk study and fieldwork findings, a schedule of soils and leachate analyses was prepared. The analyses were completed by Chemtest Limited and the results are provided in Appendix I. The following shows the testing strategy:

Location	Depth (m)	Stratum	Testing	Criteria for test selection				
TP6	0.3	Topsoil	Generic Contamination and Leachate Suites	Residual contamination from airborne				
TP10	0.1	Topsoil	Generic Contamination and Leachate Suites	particulates.				
TP15	0.2	Topsoil	Generic Contamination and Leachate Suites	Downward transfer of potential contaminants				
TP20	0.2	Topsoil	Generic Contamination and Leachate Suites	from the topsoil into underlying strata.				
TP1	0.2	Topsoil	Generic Contamination Suite	Residual contamination from airborne				
TP9	0.2	Topsoil	Generic Contamination Suite	particulates.				
TP17	0.1	Topsoil	Generic Contamination Suite					
TP21	1.0	Made Ground	Generic Contamination and Asbestos Screen					
WS9	1.25	HWLM	Generic Contamination, Total TPH and Asbestos Screen	Contamination related to the assumed backfill of historic ironstone workings.				
WS9	1.75	WLM&I	Generic Contamination, Total TPH	workings.				

Note: HWLM – Highly Weathered Lias Mudstones; WLM&I – Weathered Lias Mudstones & Ironstones

3.7 Referencing

Locations of the exploratory positions were set out using taped offsets from existing features. Ground levels at the exploratory positions have been determined by interpolating between spot levels given on the site survey drawing.

4.0 GROUND & GROUNDWATER CONDITIONS

4.1 Summary of Strata Encountered

The strata encountered across this large site can be broadly divided into 4 zones as follows:

A) <u>Higher Eastern Area at or above c. 55-60m AOD (TPs 7, 13-14, 16-20 & 22; WS4, 4A)</u> Weathered Oolitic Limestones (Lincolnshire Limestone Formation

of Inferior Oolite Group)Depth (m)DescriptionGL to 0.25/0.35TOPSOIL and SUBSOIL (brashy Sand with limestone gravel)

- 0.25/0.35 to 1.0/1.5 Medium dense silty SAND with increasing gravel and sandy GRAVEL with a variable (loamy) silty binder, clayey in parts (WEATHERED INFERIOR OOLITE GROUP)
- Below 1.0/1.5 Weak cream oolitic LIMESTONE, highly fractured with brown sandy SILT infilling, or medium dense clayey sandy SILT with siltstone lithorelicts (WEATHERED INFERIOR OOLITE GROUP)

All locations remained dry within the upper 2m from ground level.

B) <u>Central Area between typically 50-60m AOD (TPs 8 & 15; WS3)</u> Sandy Ironstone and Sandstones (Grantham Formation & Northampton Sand or Coleby Mudstones)

- Depth (m)DescriptionGL to 0.3TOPSOIL and SUBSOIL (slightly stony and very sandy)
- 0.3 to 1.0/1.5 Medium dense yellow brown and grey slightly gravelly clayey silty SAND and SILT, or firm to stiff sandy CLAY (WEATHERED LIAS GROUP)
- 1.0/1.5 to 2.0/2.2+ Firm to stiff becoming stiff grey or grey brown silty CLAY, sandy gravelly in parts. (LIAS GROUP)

Pits were initially dry, but a localised standing level c. 1.2m depth has been monitored at the base of the more weathered material.

C) <u>Central & Western area between 30-50m AOD (TPs 1-4, 6 & 10-11; WS 1-2)</u> Blown Sand overlying Lias Mudstones

<u>Depth (m)</u> GL to 0.3/0.5	<u>Description</u> TOPSOIL and SUBSOIL (slightly stony Sand)
0.3/0.5 to 0.7/1.5	Loose or medium dense yellow orange brown silty fine to medium SAND with some gravelly sand (SUTTON SAND / DEVENSIAN BLOWN SAND)
0.7/1.5 to 1.8/2.3 (locally)	Loose occasionally medium dense cream silty fine to medium SAND (HIGHLY WEATHERED MARLSTONE ROCK BED)
1.8/2.3 to 2.2/3.0+	Firm to stiff dark grey silty fine to medium SAND or (locally soft) gravelly sandy silty CLAY (WEATHERED LIAS GROUP)
Below 2.2/3.0+	Moderately strong yellow orange or brown laminated MUDSTONE, SILTSTONE, or SANDSTONE (LIAS MUDSTONES AND IRONSTONES)

Pits were dry on excavation however standing groundwater levels were monitored c. 1.3-1.9m depth at the base of the Blown Sands.

	<u>area at or below 30m AOD (TPs 5, 5A, 9 & 12; WS</u>
<u>5-9)</u> Blown Sand ov	erlying Lias Mudstones & Pecten Ironstone
<u>Depth (m)</u> GL to 0.25/0.5	<u>Description</u> TOPSOIL and SUBSOIL (very sandy)
0.25/0.5 to 0.8/1.7	Loose or medium dense yellow orange brown silty fine to medium SAND (SUTTON SAND / DEVENSIAN BLOWN SAND)
0.8/1.7 to 1.5/2.5+	Firm organic black silty sandy CLAY with PEAT horizons (ALLUVIUM / RECENT BLOWN SAND DEPOSITS)
1.5/2.5+ to 1.5/3.0+	Medium dense orange grey silty fine to medium SAND, or firm silty CLAY, including bluish green sandy glauconitic CLAY (HIGHLY WEATHERED LIAS MUDSTONES)
1.5/3.0+ to 2.5/3.0+	Firm to stiff sandy clayey SILT, with mudstone lithorelics and ironstones (WEATHERED LIAS MUDSTONES & IRONSTONES)

Water seepage occurred at typically 1.5-2.5m depth and stood at 0.5-1m where peaty organic horizons are present, or 2-2.5m where organic material was thinner.

Trial Pit 21 was an anomaly and was located within a 'bean' shaped depression in the lower southwestern area, suspected as a past area of ironstone working. This pit found Made Ground to 2.3m depth, comprising an upper organic red brown silty sand, over a thick deposit of burnt shale and resinous, odorous slag, becoming ironstone gravel and ashy slag. This presumably represents filling from the adjacent iron/steel works. The area was further investigated with 4 boreholes: the same Made Ground was not proven in the boreholes, although the (presumed in-situ) Blown Sand was a more reddish brown in this area. The boreholes were located at the periphery, but still within the depression (WS8 & WS9), at the deepest point of the depression (WS7) and just beyond the depression (WS6). There is no strong evidence of substantial backfilling of the depression / ironstone working, but the ground gas in this area is somewhat abnormal, with carbon dioxide of 2.5-8% and markedly reduced oxygen at 0.4-10%.

4.2 Groundwater

It is anticipated that rainfall infiltration will rapidly move down through the free-draining topsoil and into the superficial granular deposits in the central and western area, and into the fissured predominant limestones in the higher eastern area.

The groundwater table within the higher Lincolnshire Limestone Formation will be controlled by regional dip direction, which here is predominantly eastwards at $1-3^{\circ}$. The likely groundwater elevation is between 45-55m AOD, i.e. at least 5m below ground level in this higher area. Monitoring has not shown the water table present within the upper 2m from ground level.

In the central area between 50-60m AOD there is locally evidence for a standing water level at 1-1.5m depth at the interface of the more weathered soils and the firm or stiff clayey soils beneath.

Between 30-50m AOD the occurrence of Blown Sand deposits appears to promote good drainage of the shallow depth soils, and the moderate slopes within the central area at 1 in 10 to 1 in 20, are likely to have an unconfined groundwater table within the basal layers of these sands. Indeed, monitoring indicates standing levels at 1.3-2m depth. Spring issues are noted on the historical mapping at around 40-43m AOD and drainage ditches are prevalent below this elevation. There was no direct evidence of the groundwater table being intercepted in the investigation positions in late summer/autumn, but early winter monitoring suggests this is between 1-2m.

During the final monitoring visit undertaken during early March 2019, the midslope swales between 45-50m AOD were noted to contain surface water with low flow recorded in the drainage ditches slightly further down the slopes. The emergence of surface water in these locations correlates with shallower groundwater levels being encountered in TP6 and TP10 (the latter containing groundwater for the first time).

Below 30m AOD on the lowest western area, the Blown Sands become more clayey or silty, and there is an underlying organic peat and sand sequence in most of the investigation locations. This together with the underlying Coleby Mudstone of the Upper Lias, with a shallow surface slope of 1 in 50 to 1 in 60 promotes a shallower water table at 0.5-1m. The extreme western area has more poorly draining shallow soils, with frequent drainage ditches required. In particular, the potential ironstone working depression at TP21 shows localised poorly drained surface soils and hydrophilic vegetation with the ground fairly boggy and groundwater intercepted at just 0.2m BEGL in WS7.

4.3 Ground Gas Regime

There is a substantial industrial area downslope to the west and major opencast ironstone workings, which may have been partially backfilled. It is not anticipated that an abnormal ground gas regime will be present beneath the majority of the site, in view of the higher elevation and topography, distance and apparent lack of continuity within the Blown Sand deposits.

However there remains a potential for abnormal ground gas locally where historic small-scale ironstone workings may have occurred or been backfilled.

The monitoring visits indicate near normal ground gas regime in most locations, with no methane or gas flow and carbon dioxide of less than 5%. However, in the southwestern area around TP21/WS9 and at TP5/TP5A in the northwest the carbon dioxide is higher at 2.5-15%. Summary results are detailed below with full information provided in Appendix G.

Exploratory	TP5	TP5A	TP6	TP7	TP9	TP10
Location	11.5	11.5/(110	,		
Response Zone (m) / Strata	1.6-1.9 Alluvium	- Blown		1.5-1.8 WIOG	1.4-1.7 WLM&I	1.5-1.85 WLM&I
Evidence of Contamination	I NODE		None None		None	None
Monitoring Visits (No.)	_		4	4	4	4
Methane (%)	0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0
Carbon Dioxide (%)	11.8	0.3-6.1	0.1-3.8	1.6-3.2	1.4-4.9	2.1-2.5
Oxygen (%)	9.2	19.4- 21.9	19.1- 21.6	19.0- 19.9	13.8- 19.6	18.8-20.1

				1					1			
VOCs (ppm)	0.3	.3 0.1-1.		0.0-	0.0-0.1		0.1	0.0)-0.1		0.0	
Gas Flow (litres/hr)	0.2-0.3	2-0.3 0.0-0		0.1-0.3		0.0-0.2		0.0-0.3			0.1-0.2	
Water levels (mBGL)	1.73				We 0.87- mud 1.75 base dry		at Dry		Dry until 4 th visit (0.72)			
Atmospheric Pressure Range (mb)	1010	991 101		991-1014					991- 1014		991-1014	
Exploratory Location	WS1	WS2	V	WS3	W	S5	WS	57	WS8	}	WS9	
Response Zone (m) / Strata	1-3 BS/WLG	1-3 BS/WLG		1-2 VLG		-2 vium	0. 1. BS/	5	0.7- 2.7 BS/AI WLM8	I/	0.6-2.65 BS/All/ HWLM/W LM&I	
Evidence of Contamination	None	None	None N		No	one	No	ne	None	9	None	
Monitoring Visits (No.)	3	3		3		3	(*)	8	3		3	
Mathana (0/2)	00	00		0 0		0	0	^ _	0 0	T	0001	

						VVLIMAI	LMAI
Evidence of Contamination	None	None	None	None	None	None	None
Monitoring Visits (No.)	3	3	3	3	3	3	3
Methane (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0-0.1
Carbon Dioxide (%)	0.6-0.7	0.4-0.5	0.8-2.0	3.0-4.0	1.2- 2.7	1.7- 4.5	7.7-15.1
Oxygen (%)	20.3- 21.4	20.3- 21.4	18.0- 19.5	17.3- 18.8	18.4- 20.6	2.1- 19.4	0.4-8.0
VOCs (ppm)	0.6	0.5	0.3	0.0	0.1- 2.4	0.3- 2.1	0.3-2.8
Gas Flow (litres/hr)	0.0-0.2	0.0-0.1	0.1-0.2	0.0-0.1	0.2- 1.2	0.0- 0.2	0.0-0.2
Water levels (mBGL)	1.26- 1.39	1.73- 2.01	1.18- 1.83	0.88- 1.04	0.2- 0.56	2.0- 2.70	1.89- 2.45
Atmospheric Pressure Range (mb)	991- 1015	991- 1015	991- 1015	991- 1015	991- 1015	991- 1015	991- 1015

Note: All – Alluvium; BS – Blown Sand; HWLM – Highly Weathered Lias Mudstones; WLG – Weathered Lias Group; WIOG – Weathered Inferior Oolite Group; WLM&I – Weathered Lias Mudstones & Ironstones

4.4 Strata Properties

4.4.1 Made Ground / Topsoil

Topsoil, typically 150-300mm thick, was proven in all exploratory positions. Made Ground was encountered in the southwest of the site and an isolated area on the higher eastern plateau.

Made Ground Type/Location	Made Ground (TP21)	Made Ground (TP18)	Topsoil
Min/Max. thickness (m)	2.3 proven	1.0 proven	0.16/0.5
Main Constituents	Reddish-brown or orange silty Sand or sandy Silt with ironstone, ashy and resinous slag and burnt shale.	Yellow-brown gravel, cobbles, clay, rotting organic matter, wet hay and bark.	Typically brown silty sand or occasionally slightly clayey to clayey sandy Silt.
Properties	Granular, loosely to moderately compact.	Granular, compact.	Granular, moderately compact. Typical PSD: 0-1% Gravel; 82-89% Sand; 11-17% Clay/Silt.
Visual Contamination/ Odours	Strong odour.	Putrid odour.	None.

4.4.2 Superficial Deposits

Superficial deposits comprising Blown Sand were proven in most exploratory positions, typically in central and western areas. In lower western areas, typically below c.30m AOD, the Blown Sand was underlain by Alluvium.

Stratum	Blown Sand	Alluvium
Min / Max Thickness (m)	0.4/2.0 (proven to end of hole)	0.15/1.6
Soil Strength /Properties	Granular, loose to medium dense. Pale grey or orange fine to medium Sand, slightly silty to silty, rare gravel, occasional compact clasts. PSD: 0-3% Gravel; 78-91% Sand; 6-22% Clay/Silt. SPT N = 10	Cohesive, firm or granular, medium dense. Pale grey silty Sand or grey brown sandy Clay, decaying organic matter or pseudofibrous peat.
Occurrence	Central & Western Areas at or below c.30m up to 50m AOD.	Lower Western Area at or below c.30m AOD.
Sulphate /pH	SO₄ 0.079 g/l pH 7.2	-
Visual Contamination/ Odours	None.	Putrid odour.

4.4.3 Inferior Oolite Group

For the purposes of this report the uppermost horizons of the Inferior Oolite Group have been defined as Weathered where they are firm silt or medium dense to dense sand or gravel with bedrock defined where cobbles of strong grey limestone were recovered or the bucket of the JCB scraped along the base of the trial pit. The properties can be summarised as:

Stratum	Weathered Inferior Oolite Group	Inferior Oolite Group
Min / Max Thickness (m)	0.75/1.55 (proven to end of hole)	0.2 (proven to end of hole)
Soil Strength/ Properties	Typically granular, medium dense. Grey silty Sand and/or Gravel with moderate limestone cobble content. Occasionally soft firm sandy gravelly Silt. Cu = 45 kPa	Granular, dense. Grey cobbles with some sand and gravel with clay infill. SPT N = 50+
Occurrence	Higher Eastern Are	a above c.55-60m AOD.
Sulphate /pH	SO₄ 0.053 g/l pH 8.5	-
Visual Contamination/ Odours	None.	None.

4.4.4 Weathered Lias Group

Common throughout the Central and Western Areas of the site, typically comprising clays with some subordinate sand layers grading into the underlying Lias Mudstones and Ironstones in Lower Western Areas.

Stratum	Weathered Lias Group
Min / Max	0.2 (proven to end of hole)/1.7
Thickness (m)	
Soil Strength	Cohesive, firm to stiff rarely soft to firm. Grey mottled
/Properties	orange clay, slightly sand, silty to very silty occasionally medium dense sandy silty Clay or medium dense silty Sand. Clay strata: NMC: 15-36%. LL: 54-92%; PL: 22-30%; PI: 32-62%. Clays of High to Extremely High Plasticity. Soils of Medium to High Volume Change Potential. SPT N = 11-19; Cu = 29-76 kPa
Occurrence	Central & Western Areas at or below c.30m up to 50m AOD.
Sulphate /pH	SO4 0.083-0.093
	pH 5.4-8.2

Visual	None.
Contamination/	
Odours	

4.4.5 Lias Mudstones and Ironstones

For the purposes of this report Lias Mudstones and Ironstones have been defined as Weathered where they are firm to stiff silty Clay or medium dense sandy Gravel. Bedrock was defined where laminated mudstones were excavated alongside nodular ironstone cobbles. The properties can be summarised as:

Stratum	Weathered Lias Mudstones and Ironstones	Lias Mudstones and Ironstones
Min / Max Thickness (m)	1.2/1.4 (proven to end of hole)	0.1 (proven to end of hole)
Soil Strength /Properties	Cohesive or granular, firm to stiff. Orange-brown/grey silty Clay or clayey sandy Gravel of mudstone and ironstone. Cu = 110 kPa	Medium strong, yellow-brown mudstone and ironstone.
Occurrence	Lower Western Areas below c.30m AOD.	Lower Central Areas c.30-40m AOD.
Sulphate /pH	-	-
Visual	None.	
Contamination/		
Odours		

4.4.6 Coleby Mudstone and Marlstone Rock Bed

The Coleby Mudstone was located in TP15 only along the ridgeline marking the western extremity of the Higher Eastern Plateau, with the Marlstone Rock Bed located in TP3 and TP11 striking NE-SW across the Central Area of the site.

Stratum	Weathered Coleby	Highly Weathered Marlstone
	Mudstone	Rock Bed
Min / Max	0.3	0.9/1.5
Thickness (m)		
Soil Strength/	Cohesive, stiff.	Granular, loose to medium
Properties	Grey silty Clay.	dense
		Pale creamy grey or cream silty
		fine to medium Sand.
Occurrence	East of Central Area above	Central Areas between c.30-50m
	c.50m AOD.	AOD.
Sulphate /pH	-	-
Visual	None.	None.
Contamination/		
Odours		

5.0 GEOTECHNICAL CONSIDERATIONS

5.1 Scheme Details & Structural Loadings

The proposed development will be largely constructed close to existing grade. The development is to comprise:

- The proposed solar panel arrays are to be laid in rows approximately east – west across the field enclosures. Arrays are typically mounted on a metal framework, fixed onto steel pins driven between 1-2m depth into the ground, depending on the ground conditions. Alternatively, a system of installing small 'foot pads' for the arrays may be adopted. It is assumed that the east-west alignment across these gentle to moderate westerly facing slopes will require either very minor cutting into the slope, or more likely design of the metal frameworks to incorporate any more critical slope angles.
- In addition there will be a requirement for shallow depth cable trenches, assumed no deeper than 0.5m below existing ground level. Gravel filled drainage trenches of up to 0.5m depth are also assumed.
- The transformer and containerised battery units will be placed on reinforced concrete foundation slabs. These will be constructed on a 300mm permeable gravel bed to allow attenuation and infiltration of rainfall and surface run-off into the underlying soil, using a surrounding drain if required.

At the time of writing no structural loading information is available. Indicative drawings suggest all structures will be lightly loaded. Generic figures for the loadings of arrays of solar panels, due to both self-weight and maximum wind plus snow loadings, indicate that (for ease of calculation) a worst case maximum superimposed loading for solar panel arrays of 15kN/m² could well be appropriate.

The transformer and containerised battery units are assumed to be lightly to moderately loaded areas. Within the substation compound, the single storey Control Room building would have a maximum height of 8m. A small single storey building housing Customer Switchroom would have a maximum height of 5m.

The following geotechnical comments must be considered in relation to actual structural loads and detailing before foundations are finalised.

5.2 Site Preparation and Earthworks

Topsoil, typically 200mm thick, and any localised areas of particularly poor quality Made Ground, should be removed from beneath proposed inverter platforms, and substations, although it is accepted that the topsoil will be left

in place beneath the majority of the solar panel arrays. Excavations to at least 0.5-1m depth are likely to be feasible with conventional, light weight soils excavating machinery. Pneumatic tools may be required to break out rocky bands.

A majority of spoil resulting from excavations in the Blown Sand could well be unsuitable for reuse as structural fill if it is too silty or has been multi-handled. At least 50% of spoil resulting from excavations in the natural ground should be suitable for reuse.

Most shallow excavations in the central and eastern areas may either remain dry or encounter only slight infiltration or perched groundwater seepage. Such excavations can be kept dry by intermittent pumping from a convenient sump. In the extreme lower western area, the groundwater table could stand at only 0.5m depth in winter and such excavations could require more continuous pumping.

Temporary excavations in the Blown Sands will probably stand unsupported in the very short term at gradients of about 1 on 2 but will be subject to ravelling and overbreak and hillwash if exposed for longer term in poor weather.

Formations for structures in the majority of shallow sands and clayey soils will be moderately or very susceptible to deterioration due to site traffic and weather and should be protected immediately on exposure with 200mm of granular material, or 100mm of lean mix concrete.

Any root invaded clayey soils (likely to be limited) should be excavated and made good with well compacted granular material.

Attention is drawn to the old maps which suggest that there could be anomalous features (such as backfilled workings, minor ponds, old hedge lines and boundary ditches) beneath localised areas of the proposed solar park. Intégrale can give further advice on request.

5.3 Foundations, Ground Floor Slabs and Other Infrastructure

5.3.1 Typical Ground Conditions

In the northern central area where the Substation Compound (Work No. 4) is proposed, the typical ground conditions proven were medium dense silty sand and gravel to 1-1.5m depth grading into weak oolitic limestone or siltstone lithorelics, as found in TP22 and WS boreholes 4 and 4A. These ground conditions are anticipated to continue northwards across the alternative Battery Energy Storage System location (Work No. 2B).

In the western area of the compound, TP15 and WS3 found medium dense silt/sand or firm to stiff sandy clay, underlain by firm to stiff silty clays, of the Weathered Lias Group below 1-1.5m depth.

The groundwater table is below this depth and consequently the Weathered Inferior Oolite and Lias Group soils can provide an adequate bearing stratum for shallow spread foundations.

In the currently proposed Battery Energy Storage System area (Work No. 2A) the typical ground conditions are loose or medium dense Blown Sand to 0.7/1.5m depth, underlain by firm to stiff grey silty sand or sandy silty clay of the Weathered Lias Group. Here the groundwater table appears to stand at 1-2m depth near the base of the Blown Sand.

5.3.2 Design Bearing Pressures for Spread Footings

Depth (m) BEGL	Stratum (SPT `N' or Cu kN/m ²)	Design Bearing Pressure (kN/m ²)		
DEGL		1m*	2m*	3m*
1.0-1.5	Loose or medium dense Sand (SPT 'N' = 8-10)	100	75	50
1.0-1.5	Medium dense silty Sand or Firm Clay (SPT 'N' = >10; Cu = >60kN/m ²)	125	100	75
1.5-2.0	Stiff silty Clay to Very weak Limestone/Siltstone (Cu = >100kN/m ²)	200	175	150

The following design bearing pressures are given for guidance:

Notes: * Indicates width of foundation

At the intensities of loading given above, total settlements should not exceed 25mm, with differential settlement between adjacent pad footings of about half this value, or angular rotation along a typical 10m long strip footing of not worse than 1 in 750.

5.3.3 Shallow Pin Piles

Solar panel arrays are typically installed using pin foundations beneath the arrays, to depths of 1-1.5m. In the higher limestone areas it may be too difficult to drive pins to this depth. Consideration could be given to screw auger piles to achieve adequate resistance to overturning due to wind loading within a shallow depth. Alternatively, kentledge could be provided to surface or shallow depth pads or trays.

5.3.4 Ground Slabs

Ground slabs can be designed as ground bearing onto natural ground. In line with current guidelines, suspended slabs should be adopted where they are underlain by 600mm or more of 'non-engineered' Made Ground.

5.3.5 Formations and Inspections

It is likely that the limestone formations will be frost susceptible in this area and such formations should be provided with a minimum of 450mm of frost protection cover.

All foundation, ground slab or other substructure formations should be checked and approved by a suitably qualified and experienced engineer or geotechnical specialist.

5.4 Pavement Design

The equivalent CBR strength of anticipated pavement formations has either been determined using a Mexecone Penetrometer in trial pits and at three locations within the proposed substation area with a TRL Dynamic Cone Penetrometer. The following tentative design values are given for guidance, but should be checked on-site using a Mexecone Penetrometer during construction:

Stratum	Design CBR	Typical Depth (m) BEGL
Blown Sand	2-3%	0.3-0.6
WIOG or WLG	3-4%	0.5-1.0

Note: WIOG – Weathered Inferior Oolite Group ; WLG – Weathered Lias Group

The TRL DCP results indicate CBRs of 4% at 0.1m, 6-8% at 0.4m and 4-5% below in the clayey western zone of the substation area (TRL1). In the central and eastern zone (TRL2 & 3) the more granular soils showed 4-5% to 0.3m depth and >15% to 0.7m depth.

It would be prudent to allow a contingency for treating 'soft-spots' equivalent to 25% of the proposed hardstanding area to a depth of typically 350mm. All soft spots should be excavated and replaced with suitable well compacted granular material.

Where there could be rapid variations in formation strength, consideration should be given to a sandwiched geogrid construction which will help even out those variations to within acceptable limits. Intégrale can give further guidance on request.

5.5 Protection of Buried Concrete

In line with BRE Special Digest 1:2005 'Concrete in Aggressive Ground', 4 No. samples of natural soils were tested for water soluble sulphate, total acid soluble sulphate, total sulphur and pH. The results are reported in Appendix I.

The desk study and ground investigation indicate the site can be categorised as being:

- Natural ground unlikely to contain pyrites, although the presence of ironstones locally is noted;
- Mobile groundwater conditions, as water will flow into excavations or is percolating slowly through the ground.

The tests were scheduled on samples from the proposed substation and current proposed battery energy storage system areas. Strictly in accordance with the guidance, the number of tests completed is insufficient to categorise this type of site as a whole and the design team should consider whether further analysis should be completed.

The results show a highest water soluble sulphate of 0.09mg/l. The lowest value for pH was 5.4. The results for total acid soluble sulphate (0.03% to 0.21%) and total sulphur (<0.01% to 0.1%) indicate pyrite which may oxidise is not present. It is therefore recommended that a Design Sulphate Class of DS-1 and an ACEC Class of AC-2z be adopted for budgeting purposes.

5.6 Drainage Considerations

9 No. soakaway trials and 5 No. surface dual-ring infiltrometer tests were completed at various investigation locations. A portable water tank was used to fill hand excavated trial pits to 300mm depth. The drop in water level was recorded over time, and the results are included in Appendix F. The results indicate a typical soil infiltration rate of 1×10^{-5} m/s between ground level and 0.35m depth.

The dual-ring infiltrometer results from ground level indicate a more rapid infiltration rate in the surface (often ploughed) soils of typically $c.5x10^{-4}$ m/s.

Particle size analyses of the Topsoil samples typically record c.90% sand (of which 15-20% was defined as 'fine'). The remaining 5-15% was silt and clay sized particles. This correlates well with the measured infiltration rates.

It is considered that given the depth to standing groundwater (>1.5m) and granular nature of the shallow natural soils, the majority of rainfall infiltration will simply soak away rapidly.

In the extreme lower western area, groundwater can stand higher at 0.5 to 1.0m depth, although the surface soils are often still very sandy. Here

infiltration rates could be slower and the current fields are drained via drainage ditches.

6.0 GENERIC QUANTITATIVE CONTAMINATION ASSESSMENT

6.1 Summary of Soils Results with Respect to Human Health

The conceptual model based on the source-pathway-receptor linkages is summarised as:

SOURCE		PATHWAY		RECEPTOR
Contaminated soils	\rightarrow	Dermal exposure (during groundworks)	\rightarrow	On-site cons worker /ma

- n-site construction orker /maintenance engineer On-site construction
- Contaminated soils \rightarrow Inhalation of soil dust
- \rightarrow worker /maintenance engineer

A generic risk assessment has been undertaken by comparing proven concentrations of contaminants against generic assessment (or screening) criteria (AC).

The AC adopted are the published LQM/CIEH Suitable For Use Levels (S4UL's), for a generic commercial /industrial end-use, adopted under licence no. 3580. These provide a precautionary approach, based on the principle of minimal or tolerable risk, but relying on conservative values for soil type (sandy loam) and organic matter contents of 1, 2.5 or 6% as appropriate. Where no S4UL is published, e.g. lead, the alternative AC is the most recently published industry standard value.

If the proven contaminant concentration is less than the respective AC, it is considered there is no significant risk to human health from these substances.

No contaminants were present in the analysed samples in excess of the relevant assessment criteria.

Summary of Soils Results with Respect to Phytotoxicity 6.2

The soil samples where phytotoxic contaminants exceeded the former ICRCL 59/83 thresholds are:

Standard	Substance	Stratum	Depth BEGL	Area / Zone
Phytotoxic	Nickel, zinc	Made Ground	1.0-1.75m	TP21, WS9
Target				

These results are insignificant given their depth and the proposed grassed soil cover beneath the solar panels.

6.3 Summary of Soils Results with Respect to WRAS

The soil samples which exceeded the Water Regulations Advisory Scheme (WRAS) guidance on water supply pipes are:

Little Crow Solar Park, Scunthorpe, DN20 0BG 1997/02, Vers.5, November 2020, Submission

Standard	Substance	Stratum	Depth BEGL	Area / Zone
WRAS		Natural Soils & Made Ground	GL-1.5m	Range of locations
	TPH	Made Ground	1.75m	WS9

This suggests that new water pipes laid through the Blown Sand or Made Ground will need to be protected against chemical attack. Requirements should be confirmed with the water supply company.

6.4 Controlled Waters

6.4.1 Conceptual Model

The assessment of risks to controlled waters follows guidance provided by the Environment Agency, including their Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination (2006). The conceptual site model has been developed based on the source-pathway-receptor linkages identified during the desk study and fieldworks. Possible sources, pathways and receptors have been assessed, which identifies the potential pollutant linkages as:

SOURCE		PATHWAY		RECEPTOR
Contaminated soils	<i>→</i>	Leaching from soils or migration of liquid contaminants through the unsaturated zone.	<i>→</i>	Groundwater
Contaminated soils	→	Leaching from soils or migration of liquid contaminants through service runs	<i>→</i>	Surface Water Courses
Contaminated soils	→	Run-off from disturbed surface soils (during groundworks)	\rightarrow	Surface Water Courses

Leachate results have therefore been compared against the freshwater environmental quality standards (EQS) adjusted for water hardness. In the absence of EQS values, then DEFRA Freshwater Standards (FS), Surface Water Abstraction Directive (SWAD) values, or UK Drinking Water Standards (UKDWS), have been adopted, in priority order.

6.4.2 Summary of Leachate Results

No substances were present in the analysed leachate samples in excess of the criteria.

Little Crow Solar Park, Scunthorpe, DN20 0BG 1997/02, Vers.5, November 2020, Submission 26

6.5 Gas Mitigation

The monitoring, based on 3-4 visits, indicates a typical Gas Regime classification of Characteristic Situation 1 for the majority of the site. At TP5/5A, the organic peaty soils produced 6-12% carbon dioxide with very low flow of 0.3 l/hr. At WS9, carbon dioxide of 3-15% was recorded with slightly higher flow of 1.2 l/hr. Nowhere was methane measured at >0.1% by volume.

At TP5/TP5A in the northwest of the site, there appears to be 0.8-1.7m cover of topsoil and Blown Sands overlying the Alluvium which is producing this slightly abnormal carbon dioxide level.

In the southwest of the site at TP21/WS9 there is Made Ground locally, however it appears to be the organic Alluvium underlying the Topsoil and Blown Sand, again between 0.7-1.5m depth BEGL, generating the abnormal carbon dioxide.

It is concluded that there is no need to adopt any protective measures against gas ingress for in-ground plant and services or for the proposed structures and infrastructure in the substation and battery energy storage system areas.

However, in the extreme lower western area, where Alluvium is present (as summarised in Section 4.1 D) there is an increased risk of abnormal carbon dioxide concentrations. No protective measures should be needed for inground plant, however appropriate precautions should be taken for construction or maintenance workers if any excavations below 1m are required in such ground conditions.

6.6 Conceptual Exposure Model & Risk Assessment

The potential hazards and risks from soils, water and gas contamination have been developed as a Conceptual Exposure Model, based on desk studies, proven ground conditions, analytical and monitoring results and the proposed redevelopment. Substances actually proven, or strongly suspected present, have been assessed against potential exposure pathways and available receptors.

The following hazard-pathway-receptor linkages are therefore established for this site:

- WRAS Contaminant Threshold Concentrations are exceeded in a range of locations;
- Carbon dioxide is slightly elevated in the Alluvial areas which could pose a risk to ground workers if any confined space working is undertaken.

6.7 Recommendations

6.7.1 For Protection of Human Health

Based on the generic screening assessment undertaken to date, the following measures will be necessary to protect the health of construction/ground workers and maintenance engineers.

a) Advice and protection to groundworkers during excavations.

6.7.2 For Protection of Groundwater / Surface Water

Based on the generic screening assessment undertaken to date, the following remedial measures will be necessary to protect the groundwater table and adjacent surface water courses:

- a) Adoption of an appropriate buffer zone alongside all ditches and water courses with no access during works;
- b) Measures to prevent soil erosion and rainfall run-off during the complete construction period.

6.7.3 For Protection of Building Materials & Services

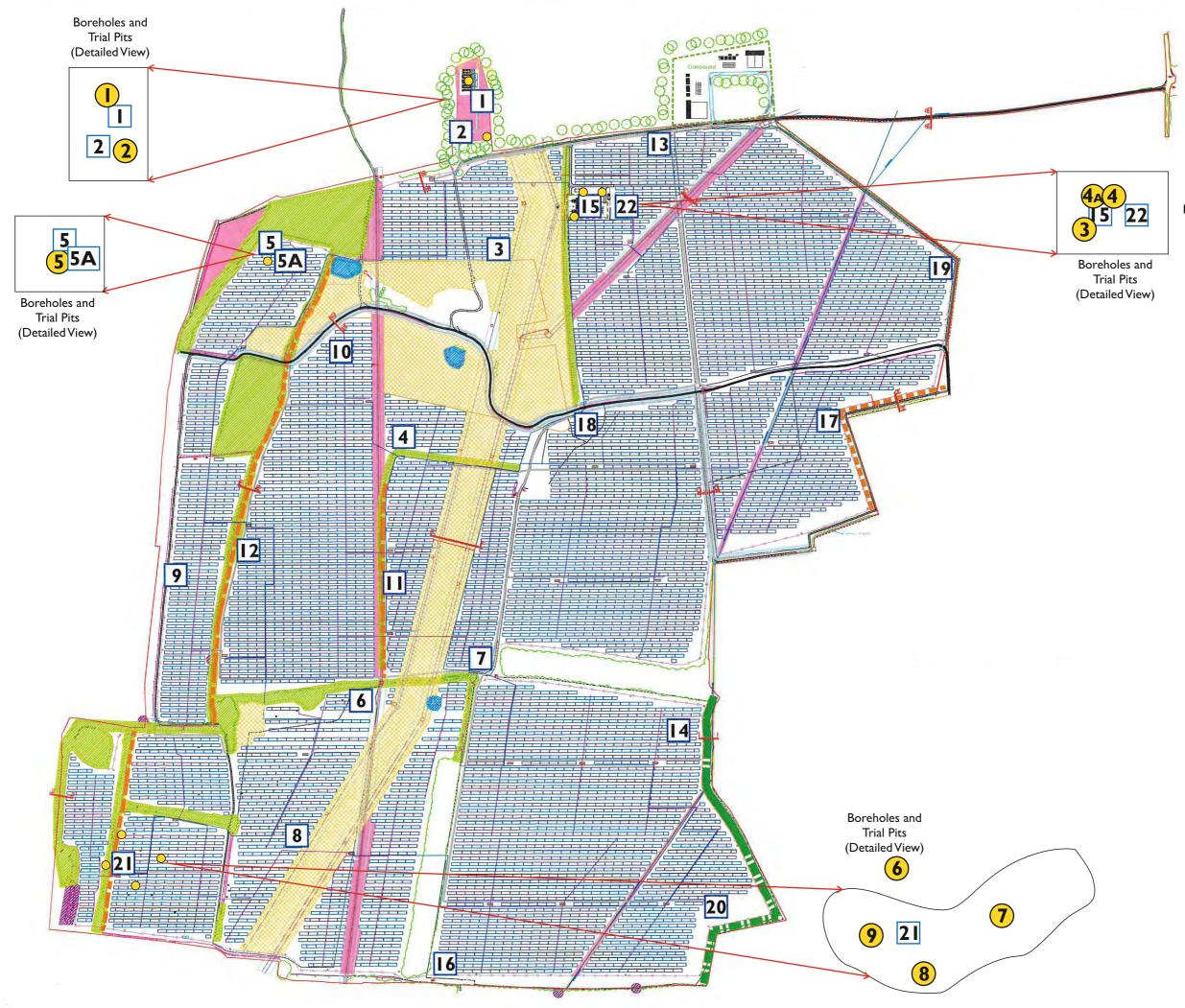
To protect new building materials the following precautions will be necessary:

- a) Specification of appropriate concrete protection for the sulphate/pH environment, as detailed in Section 5;
- b) Use of protective pipework for all new water supplies.

6.7.4 For Protection of New Vegetation

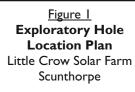
Based on the results to date it seems unlikely that any measures are required.

6.7.5 Reuse and Disposal of Surplus Spoil

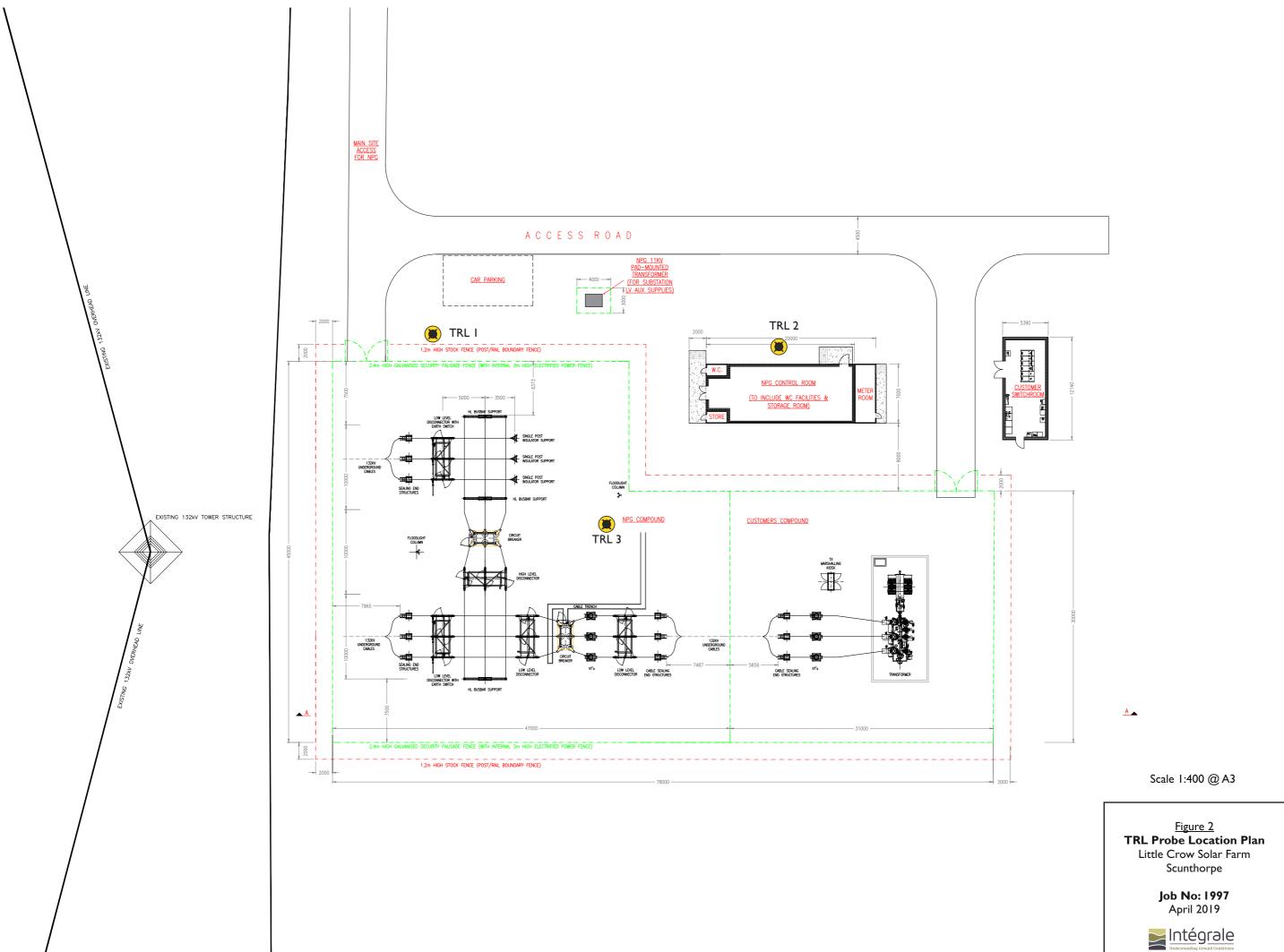

It seems unlikely to be possible to reuse any excavated spoil comprising the Made Ground from the TP21 area in the southwest of the site.

Should soils need removal to a suitably licensed tip, waste characterisation and classification in accordance with the Environment Agency's Technical Guidance will need to be undertaken to comply with the Duty of Care.

6.7.6 Recommended Further Action

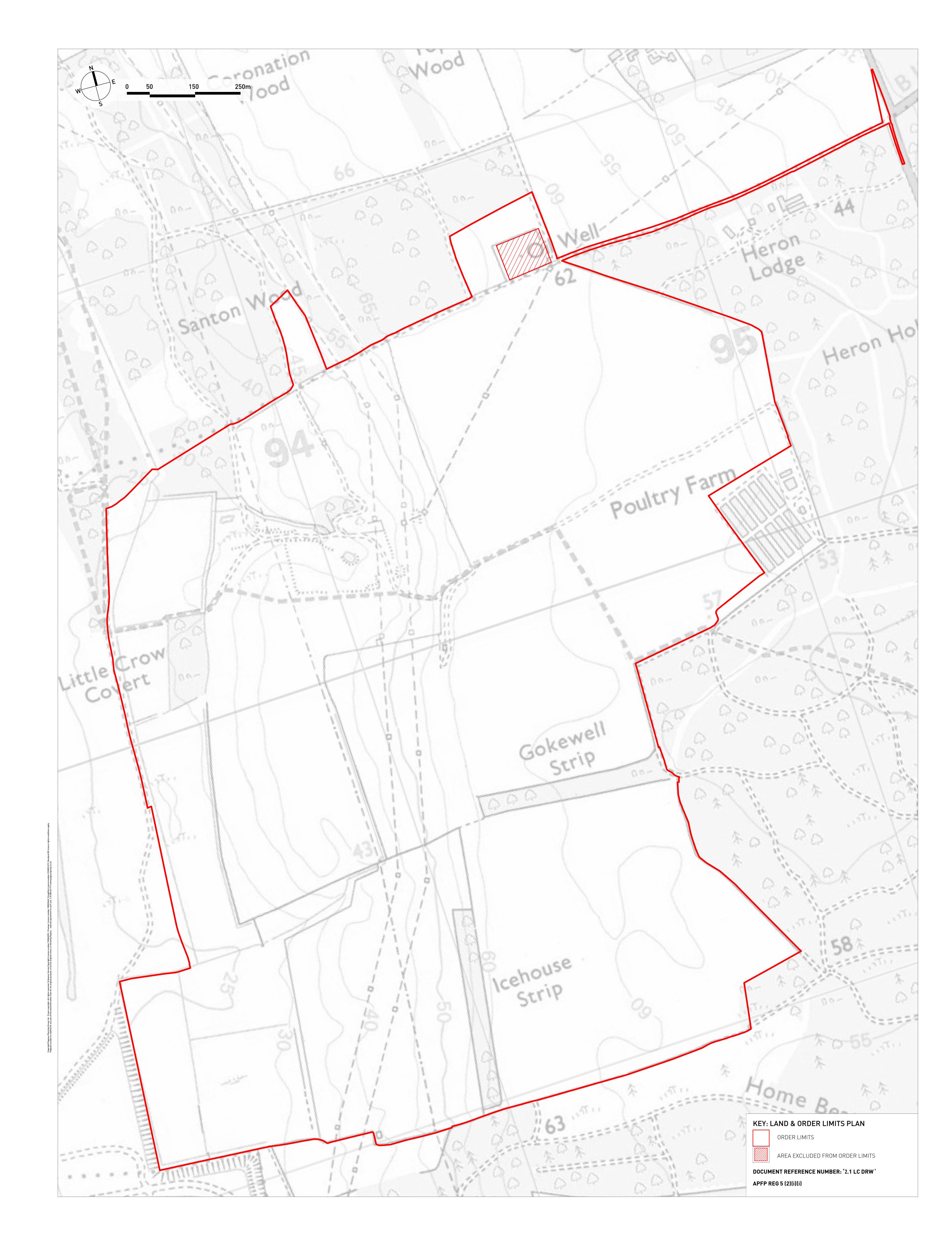

A watching brief should be kept at all times while groundworks are occurring. Should any signs of unforeseen contamination be found during groundworks, Intégrale should be contacted immediately to determine the best course of action.

Copies of this report were provided to the Local Authority and Environment Agency to confirm their agreement with the findings and recommendations.



For TRL probes see Figure 2)

Job No: 1997 April 2019



Appendix A

Site Location

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Integrale Limited, Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP United Kingdom Tel: 01275 333 036 www.integrale.uk.com

LITTLE CROW SOLAR PARK - LAND PLAN INCLUDING ORDER LIMITS Pegasus

PLANNING | DESIGN | ENVIRONMENT | ECONOMICSoww.pegasusgroup.co.uk | TEAM/DRAWN BY: RIT | APPROVED BY: GR | DATE: 30/10/2020 | SCALE: 1:2500 @ A0 | DRWG: P17-0718_29 SHEET NO: __ REV: E | CLIENT: INRG SOLAR (LITTLE CROW) LTD.

Appendix B

Site Description / Photographs

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Integrale Limited, Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP United Kingdom Tel: 01275 333 036 www.integrale.uk.com

Tel: 01275 333036 www.integrale.uk.com

REFERENCES	
Project No & Address	1997 – Land West of the B1207, Scunthorpe, DN16 IXP
Grid Reference	E494000 N410000
Date of Visit	25-27.09.18
Site developers	David Dean - INRG Solar (Little Crow) Lts
Prepared by	јв
SITE – GENERAL	
Plan of site	See Figure 1.
Site size (area):	Farmland: 85%, open space: 5%, woodland: 5%, access tracks: 5%.
Current use:	Arable farmland.
Site Area:	Approximately 215Ha, irregular in plan view.
Maximum Dimensions:	1700m N-S by 1100-1500m E-W.
Boundaries:	Agricultural fences, hedgerows and mixed mature deciduous and evergreen trees.
Limitations for plant hire:	None.
Specific working hours/requirements:	08:00-17:00, code for padlock on entrance gate.
Site-specific H&S considerations:	Sloping ground, lone working.
Water/power supply, hydrant:	2 No. 1000L IBCs delivered to site.
SITE – BUILDINGS	
SITE – BUILDINGS	rees and thick overgrowth is within the archaeological buffer
SITE – BUILDINGS Gokewell Priory (ruin) located within a dense copse of tr zone.	
SITE – BUILDINGS Gokewell Priory (ruin) located within a dense copse of tr zone. SITE – EXTERNAL	The matching and thick overgrowth is within the archaeological buffer Made and unmade access tracks cross the site. Potholes are common in the unmade tracks and where tarmac is present it is very worn and breaking along the margins of
SITE – BUILDINGS Gokewell Priory (ruin) located within a dense copse of tr zone. SITE – EXTERNAL Hard surfacings:	rees and thick overgrowth is within the archaeological buffer Made and unmade access tracks cross the site. Potholes are common in the unmade tracks and where tarmac is present it is very worn and breaking along the margins of the road. Arable farmland with small areas of mature woodland. Grassy scrub and other vegetation in SW and extreme N in proposed battery storage area. Crops planted in extreme E of the site and will not be affected by works. Site investigation conducted in this area on 12 th
SITE – BUILDINGS Gokewell Priory (ruin) located within a dense copse of tr zone. SITE – EXTERNAL Hard surfacings: Landscaped areas/soft landscaping: Invasive species noted:	 Made and unmade access tracks cross the site. Potholes are common in the unmade tracks and where tarmac is present it is very worn and breaking along the margins of the road. Arable farmland with small areas of mature woodland. Grassy scrub and other vegetation in SW and extreme N in proposed battery storage area. Crops planted in extreme E of the site and will not be affected by works. Site investigation conducted in this area on 12th September.
SITE – BUILDINGS Gokewell Priory (ruin) located within a dense copse of tr zone. SITE – EXTERNAL Hard surfacings: Landscaped areas/soft landscaping:	 Prees and thick overgrowth is within the archaeological buffer Made and unmade access tracks cross the site. Potholes are common in the unmade tracks and where tarmac is present it is very worn and breaking along the margins of the road. Arable farmland with small areas of mature woodland. Grassy scrub and other vegetation in SW and extreme N in proposed battery storage area. Crops planted in extreme E of the site and will not be affected by works. Site investigation conducted in this area on 12th September. None noted. N/A Higher eastern plateau (60-67mAOD), very gently sloping E. Central area at (40-60mAOD), moderately sloping W. Western zone (30-40mAOD), moderately sloping W. Extreme western zone (25-30mAOD), very gently
SITE – BUILDINGS Gokewell Priory (ruin) located within a dense copse of tr zone. SITE – EXTERNAL Hard surfacings: Landscaped areas/soft landscaping: Invasive species noted: Can investigation be in landscaped areas:	 Trees and thick overgrowth is within the archaeological buffer Made and unmade access tracks cross the site. Potholes are common in the unmade tracks and where tarmac is present it is very worn and breaking along the margins of the road. Arable farmland with small areas of mature woodland. Grassy scrub and other vegetation in SW and extreme N in proposed battery storage area. Crops planted in extreme E of the site and will not be affected by works. Site investigation conducted in this area on 12th September. None noted. N/A Higher eastern plateau (60-67mAOD), very gently sloping E. Central area at (40-60mAOD), moderately sloping W. Western zone (30-40mAOD), moderately sloping W.
SITE - BUILDINGS Gokewell Priory (ruin) located within a dense copse of tr zone. SITE - EXTERNAL Hard surfacings: Landscaped areas/soft landscaping: Invasive species noted: Can investigation be in landscaped areas: Site topography: Evidence of filling or raising, mass movement etc.	rees and thick overgrowth is within the archaeological buffer Made and unmade access tracks cross the site. Potholes are common in the unmade tracks and where tarmac is present it is very worn and breaking along the margins of the road. Arable farmland with small areas of mature woodland. Grassy scrub and other vegetation in SW and extreme N in proposed battery storage area. Crops planted in extreme E of the site and will not be affected by works. Site investigation conducted in this area on 12 th September. None noted. N/A Higher eastern plateau (60-67mAOD), very gently sloping E. Central area at (40-60mAOD), moderately sloping W. Western zone (30-40mAOD), moderately sloping W. Extreme western zone (25-30mAOD), very gently sloping W. Bean-shaped depression in SW may indicate infilling and

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

	the site from perimeter woodland and do not form part of the proposals. Santon Wood (N) surrounds the proposed battery storage area.
Rock/soil exposures:	Topsoil exposed in freshly ploughed fields.
Drainage:	Number of dry ditches on field boundaries in the W of the site.
Other evidence of Services:	Overhead cables cross the site at height with a number of pylons located within the site. Smaller telegraph poles are present. All overheads generally running N-S or NE- SW across the site.
Vehicle maintenance:	N/A
Waste:	None.
Sub-stations:	N/A
Ecological features of note:	None.
Any seepages on or adjacent to site.	None.
Watercourses, water levels, direction and rate of flow.	Little Crow Covert (approx. 8m deep) forms western boundary of the site, flowing south. A number of drainage ditches are present in the west of the site and flow downhill towards the covert. A pond in the NW of the site also feeds into the covert.
Other features of note within site.	None.
SURROUNDING LAND USES	
General site context:	Predominantly agricultural.
Land use – north:	Woodland and arable farmland.
Land use – south:	Woodland, arable farmland and Ravensthorpe Solar Farm.
Land use – east:	Woodland, poultry farm and arable farmland.
Land use – west:	Steel works and disused open cast ironstone workings.
Nearby (<500m) sources of pollution:	Steel works (British Steel), historic ironstone workings.
Nearby river / surface water features:	Little Crow Covert forms W boundary of site.
Local ground profiles and signs of instability.	Some rotated trees on the covert banks, appears more to be age and weather related rather than slope instability.
Evidence of structural distress on nearby buildings.	N/A
Evidence of mining history:	Linear ironstone quarries (gullets) to W of site with hummocky ground.
Nearby rock/ soil outcrops.	None.
Vegetation – distinctive change in vegetation:	Lush grass coverage is SW of site with sporadic hydrophyllic vegetation.
Adjacent geotechnical features of note:	Ironstone quarries.
Other features of note adjacent to site.	None.

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Integrale Limited, Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP United Kingdom Tel: 01275 333 036 www.integrale.uk.com

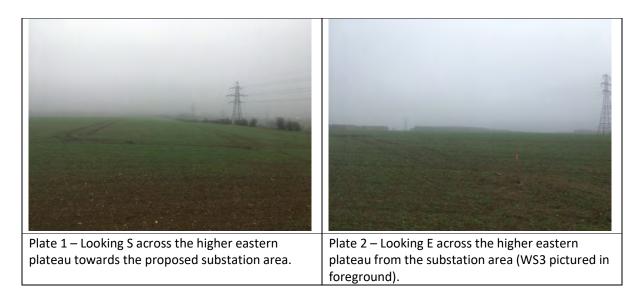


Plate 3 – Looking W downslope towards the steelworks from the substation area.

Plate 4 – Looking NW across the battery storage area.

storage area.

Little Crow Solar Farm, Scunthorpe, DN16 1XP

the site, upslope from TP6 (Icehouse Strip pictured top left).

site (WS5 pictured in foreground).

Appendix C

Additional Desk Study Information

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Integrale Limited, Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP United Kingdom Tel: 01275 333 036 www.integrale.uk.com

		Ν	Τ	Ε		R
(0	F	F		С	E

MEMO

To: Andrew Law, Development Management

From: Environmental Health (Commercial)

Your Ref: Pre planning application, PRE/2018/137

Our Ref PLU 003933

Subject: Ground mounted solar park up to 150MWp

Location: Little Crow Solar Park, Santon, Scunthorpe

Date: 30 August 2018

Thank you for your email requesting this department's comments on the above pre Application request.

The applicant has included details of the proposed development for the installation of a solar park with a maximum export capacity of 100Mw. The proposal will also include approximately 50Mw of battery storage containers that will provide a frequency response to the national grid at times when the solar park is not exporting at peak capacity.

There will also be electrical connection infrastructure and the point of connection into the local electricity grid is directly to the 132kva electricity overhead pylon which already runs through the development site.

Due to the potential generating capacity, at over 50Mw, this project constitutes a Nationally Significant Infrastructure Project and the application will go to the Secretary of State for a Development Consent Order.

The proposed development is 140m to the nearest sensitive residential receptors, this department therefore requires the following with any planning permission applied for.

Construction Environmental Management (CEMP)

This department is concerned that noise, dust, light etc. during the construction phase has the potential to impact on amenity. To prevent local residents and other sensitive receptors being affected during the construction of the proposed development, this department recommends the inclusion of the following conditions: 1. No stage of the development hereby permitted shall commence until a Construction Environmental Management Plan (CEMP) has been submitted to and approved in writing by the Local Planning Authority. The CEMP shall include the following:-

Noise and vibration: The CEMP shall set out the particulars of -

- a) the works, and the method by which they are to be carried out;
- b) the noise and vibration attenuation measures to be taken to minimise noise and vibration resulting from the works, including any noise limits; and
- c) a scheme for monitoring the noise and vibration during the works to ensure compliance with the noise limits and the effectiveness of the attenuation measures

Light: The CEMP shall set out the particulars of -

- a) Specified locations for contractors' compounds and materials storage areas,
- b) Areas where lighting will be required for health and safety purposes,
- c) Location of potential temporary floodlights,
- d) Identification of sensitive receptors likely to be impacted upon by light nuisance,
- e) Proposed methods of mitigation against potential light nuisance, including potential glare and light spill, on sensitive receptors.

Dust: The CEMP shall set out the particulars of -

- a) Site dust monitoring, recording and complaint investigation procedures
- b) Identification of receptors and the related risk of dust impact at all phases of the development, including when buildings and properties start to be occupied
- c) Provision of water to the site
- d) Dust mitigation techniques at all stages of development
- e) Prevention of dust trackout
- f) Communication with residents and other receptors
- g) A commitment to cease the relevant operation if dust emissions are identified either by regular site monitoring or by the local authority
- h) A no burning of waste policy

- 2. Construction and site clearance operations shall be limited to the following days and hours:
 - 07:00 to 19:00hrs Monday to Friday.
 - 07:00 to 13:00hrs Saturday.
 - No construction or site clearance operations on Sundays or public holidays.
 - HGV movements shall not be permitted outside these hours during the construction phase without prior written approval from the Local Planning Authority.
 - Installation of equipment on site shall not be permitted outside these hours without prior written approval from the Local Planning Authority.

Operational noise

The applicant has not provided any information in relation to operational noise of the development site including the use of battery storage containers. However, given the location and nature of the proposed development, it is likely that operational noise will not give rise to significant adverse impact provided that any necessary mitigation measures are included. This department would expect a planning application to include details of operational noise sources and predicted noise levels at relevant locations.

Contaminated Land

A desk study has been included with this application. The desk study has indicated that the current site has a prolonged history of agricultural usage, with no evidence of large scale ironstone extraction or landfilling within the boundaries. However due to the proximity to the steel works, this department would recommend checking for the location of ironstone gullets and mineshafts in the area before any development is undertaken.

[redacted] Integrale Unit 7 Westway Farm Wick Road Bishop Sutton Bristol BS39 5XP
 Our ref:
 AN/2018/127969/02-L01

 Your ref:
 28 September 2018

Dear [redacted]

Construction of a solar farm (126MW) - Development Consent Order Little Crow Solar Farm, Broughton, Scunthorpe, DN16 1XP

Thank you for requesting our pre-application advice in respect of the above project, which is provided below.

We have reviewed the 'Phase I Ground Conditions Desk Study' (ref 1844, version 4, July 2018), whilst referring to the Flood Risk Assessment and Drainage Strategy (FRADS) (undertaken by Clive Onions, 26 July 2018 version 2) for background information. Please note that we have not undertaken a detailed review of the FRADS as the site does not lie within the Environment Agency's floodplains for tidal and fluvial risk and issues relating to other sources of flooding are outside of our remit.

The site overlies numerous geologies, but includes limestone and superficial deposits, which are classified as Principal and Secondary A aquifers respectively. The previous use of the site is largely greenfield, although the area has a history of quarrying and workings and as a result there are possible areas of infill on the site. The site is also adjacent to an historic landfill, Scunthorpe Concast, to the west.

The report presents a good conceptual site model and we are in agreement with the conclusions reached in section 4 of the report. Limited intrusive investigation is proposed in the areas of possible infill to add to the conceptual understanding of the site. We are also in agreement with the proposed sampling locations.

From a controlled water perspective we are satisfied with the proposed approach. During any formal consultation in respect of the Development Consent Order we are likely to request the imposition of a requirement for further phased land contamination investigation. The following gives a draft of our likely requirement:

Contaminated land and groundwater scheme

(1) No part of the authorised development may be commenced until a scheme to deal with the contamination of any land (including groundwater) within the Order limits that is likely to cause significant harm to persons or pollution of controlled waters or the environment has been submitted to, and approved by, the local planning authority in consultation with the Environment Agency.

(2) The scheme must include an investigation and assessment report, prepared by a specialist consultant approved by the local planning authority, to identify the extent of any contamination and the remedial measures to be taken for that stage to render the land fit for its intended purpose, together with a management plan which sets out long-term measures with respect to any contaminants remaining on the site.

(3) No remedial work constituting a material operation (as defined in section 155 of the 2008 Act) in respect of contamination of any land (including groundwater) within the Order limits may be carried out until the scheme has been approved.

(4) In carrying out the works for the authorised development, the undertaker must not conduct trenchless technique operations unless the scheme includes a hydrogeological risk assessment demonstrating that such operations are unlikely to cause an unacceptable risk to groundwater quality.

(5) Remediation must be carried out in accordance with the approved scheme.

(6) In this Requirement, "controlled waters" has the meaning given in Part 3 of the Water Resources Act 1991.

The above advice is provided under our cost recovery agreement number ENVPAC/1/LNA/00031 and an invoice for £300 plus VAT will be issued to you shortly.

Should you require any additional information, or wish to discuss these matters further, please do not hesitate to contact me on the number below.

Yours sincerely

[redacted] Principal Planning Adviser

Direct dial [redacted] Direct e-mail [redacted]@environment-agency.gov.uk

Appendix D

Trial Pit Logs

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Integrale Limited, Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP United Kingdom Tel: 01275 333 036 www.integrale.uk.com

Tel: 01275 333036 www.integrale.uk.com

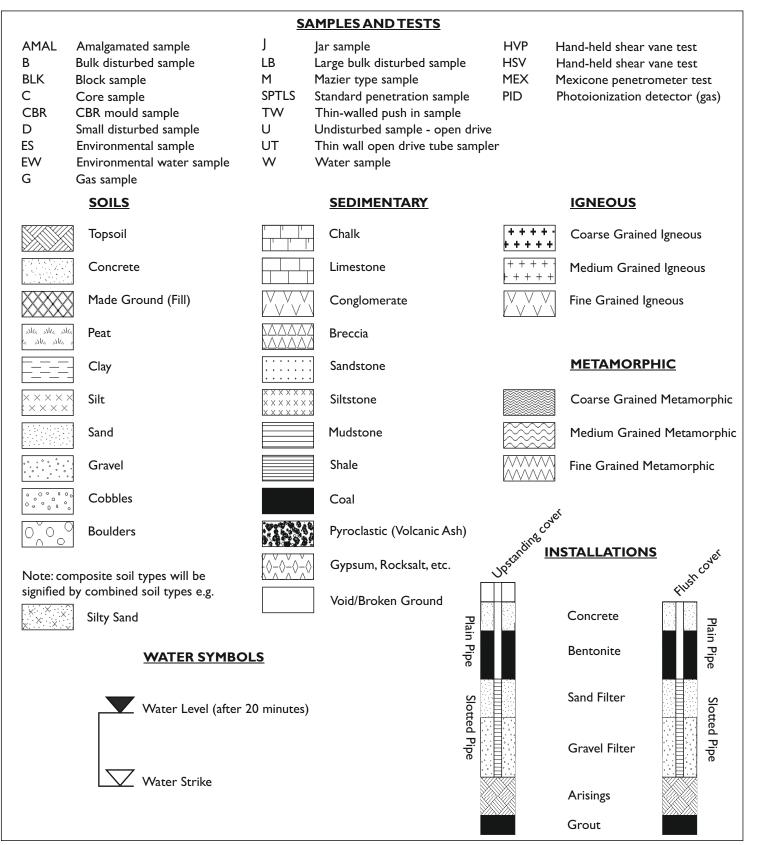
STANDARD METHODOLOGY FOR MECHANICAL TRIAL PITTING

Trial pits are mechanically excavated using a wheeled or tracked backhoe or mini-excavator, typically fitted with toothed buckets. The trial pit locations are selected using information on the proposed redevelopment, existing buried services and structures, ongoing site use, reinstatement requirements and time constraints. Those positions are shown on Figure I and the trial pit records included as a separate appendix.

Trial pitting was directed and supervised full-time by an experienced engineering geologist who carried out insitu testing, kept a record of the strata encountered, noted the pit side stability and ease of digging, any water ingresses, took photographs and recovered representative disturbed samples.

Insitu testing comprised hand shear vane measurement in appropriate cohesive strata to provide a direct reading of insitu undrained shear strength. Tests were completed from within the pit to depths of approximately 1.2m below ground level and within excavated spoil below this. The hand shear vane is inserted into cohesive soil and rotated at an even speed equivalent to one rotation per 60 seconds. Three tests are typically taken and the average result used as the undrained shear strength in kN/m².

Mexicone penetrometer testing was undertaken either from ground level or at shallow depth within trial pits and the test results are included in the trial pit records. The mexicone penetrometer is a simple, hand-held device which gives a direct read out of equivalent CBR strength, on a cylindrical gauge. Readings are recorded for each 75mm penetration and where suitable soils are present, successive readings up to 0.6m total penetration can be achieved. However, the test can abort on coarse granular soils or other obstructions and in this case the term 'refusal' is given in the test records.


On completion the pits were backfilled with their spoil, compacted with the excavator bucket and the surplus left mounded to allow for subsequent consolidation settlement. If specific reinstatement has been requested by the client, this is confirmed in the main text of this report.

The trial pit records have been prepared using Gint software, taking into account both site descriptions and subsequent laboratory testing.

Suite 7, Westway Farm Business Park Wick Road Bishop Sutton BS39 5XP Tel: 01275 333 036 www.integrale.uk.com

EXPLORATORY HOLE EXPLANATION SHEET

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Intégrale is a trading name of Integrale Limited Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX, United Kingdom Company Registration No. 2855366 England VAT Reg. No. 609 7402 37

			rale			Tri	al Pit Log	1
rojec lame:	t Little Cr	ow Solar, S	cunthorpe	Projec 1997	t No.		Co-ords: - Date Level: 47.23 25/09/20	10
ocati		orpe, DN16	1XP	1997			Dimensions 1.9 Scale	
lient:		olar Limited					(m): Depth	d
			Situ Testing	Depth	Level		2.30 TF	
Strike	Depth	Туре	Results	(m)	(m)	Legend		
	0.20	ES					TOPSOIL: (Comprising grass over moderately compact brown silty fine to medium Sand).	
	0.50	D		0.35	46.88		[Loose to medium dense] orange silty fine to medium SAND. (BLOWN SAND)	
	1.20	D		1.60	45.63		MEX at 0.7m = 1,2,3,6,14,12,Refusal.	
	1.80	D	HVP=56				Firm to stiff grey mottled orange extremely plastic CLAY. (WEATHERED LIAS GROUP)	
	2.30	D	HVP=60	2.30	44.93		End of pit at 2.30 m	
ema	rks: No g	roundwater	encountered.					:

			ale Conditions			Tri		oit No 02 1 of ²
Project lame:		ow Solar, S	cunthorpe	Projec	t No.		Co-ords: - Da	te
ocatio		orpe, DN16	170	1997				ale
		-						15 ged
ient:		olar Limited						F
Strike	Sampl Depth	Type	Bitu Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	
	0.20	ES		0.40	46.42		TOPSOIL: (Comprising grass over moderately compact brown very silty fine to medium Sand. One bone fragment).	
	0.60	D					medium SAND. Occasional clasts of sub-rounded compact orange-brown silty sand. (BLOWN SAND) <u>MEX at 0.6m = 7,14,14,12, Refusal</u>	
	0.85	D		0.80 0.90	46.02 45.92		[Medium dense] orange brown silty fine to medium SAND. (BLOWN SAND) Firm to stiff grey locally mottled orange-brown slightly sandy silty CLAY. Sand is fine to medium. Lenses of damp silty sand between Ø 50-100mm.	
	1.20	D	HVP=76				(WEATHERED LIAS GROUP)	
	2.00	D	HVP=50	2.20	44.62		End of pit at 2.20 m	
Remar		roundwater	encountered.					

			rale			Tri	ial Pit Log	Trialpit N TPO: Sheet 1 c	3
roject lame:		ow Solar, S		Projec	t No.		Co-ords: -	Date	
ocatio	n: Scuntho	orpe, DN16	1XP	1997			Level: 48.73 Dimensions 2.2	25/09/20 Scale	
lient:		olar Limited					(m): Depth	1:15 Logged	b
			Situ Testing				2.30	TF	
Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.20	ES		0.40	48.33		TOPSOIL with some MADE GROUND: (Comprimoderately compact brown slightly clayey silty f medium Sand with rare gravel. Gravel is fine to sub-angular to sub-rounded brick and cinder). [Loose to medium dense] orange-brown clayey to medium SAND with occasional very compact compact conded medium to access clarks of aith or and conder to access a clarks of aith or and conder to access a clarks of aith or and conder to access a clarks of aith or and conder to access a clarks of aith or and conder to access a clarks of aith or and conder to access a clarks of aith or and conder to access a clarks of aith or and conder to access a clarks of aith or and conder to access a clarks of aith or access and clarks of aith or access and clarks of aith or access a clarks of aith or access and clarks of a clarks of	silty fine	
	1.00	D					rounded medium to coarse clasts of silty sand a of orange brown clay. (BLOWN SAND) MEX = 4,7,10,12,7,12,12,14	and clasts	
	1.80	D		1.40	47.33		[Loose to medium dense] cream fine to medium (MARLSTONE ROCK BED)	SAND.	
				2.30	46.43		End of pit at 2.30 m		

			al Conditions			Tri	al Pit Log	Trialpit N TP04 Sheet 1 o	1
Project lame:		ow Solar, S	cunthorpe	Projec 1997	t No.		Co-ords: - Level: 42.88	Date 26/09/20 ⁻	18
ocatio		rpe, DN16	1XP	1007			Dimensions 2.7	Scale	
ient:		olar Limited					(m): Depth	1:15 Logged	ł
			itu Testing	Danth	Laval		2.70	TF	
Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	I Stratum Description		
	0.30	ES		0.50	42.38		TOPSOIL: (Comprising loose to moderately com brown slightly clayey silty fine to medium becom medium Sand). [Loose to medium dense] orange brown fine to r	ing	
	0.80	D		0.90	41.98		SAND. (BLOWN SAND) <u>MEX at 0.6m depth = 2,3.5,5,5,10,</u> 14,Refusal.		
	1.30	D		0.00	41.00		 [Loose to medium dense] pale cream grey slight fine to medium SAND. (HIGHLY WEATHERED MARLSTONE ROCK B 		
				1.80	41.08		Below 1.5m depth gravel and cobble-sized clasts of compa- sand.		
	1.90	D					with bands of dark grey clayey silty sand. Sand i medium. (WEATHERED LIAS GROUP) Below 1.8m depth becoming very damp.	s fine to	
	2.30	D		2.70	40.18		End of pit at 2.70 m		
emar		oundwater	encountered bu			1.8m de			
Remar Stabilit			encountered bu below 1.2m.	ıt strata dan	ıp below	1.8m de	epth.		

oject ime: cation: ent:	Little Cro		d Conditions				al Pit Log TPO	
cation:		w Solar, S	cunthorpe	Projec 1997	t No.		Co-ords: - Date Level: 25.55 25/09/20	10
	Scunthor	rpe, DN16	1XP	1007			Dimensions 2.1 Scale	
ent:		-					(m): Depth	
		olar Limited				1	2.40 TF	
Strike	Depth	Type	itu Testing Results	Depth (m)	Level (m)	Legenc	Stratum Description	
S	0.20	ES		0.30	25.25		TOPSOIL: (Comprising moderately compact dark brown silty fine to medium Sand). [Loose to medium dense] orange-brown silty fine to medium SAND.	
	0.60	D					(BLOWN SAND)	
	0.90	ES		0.80	24.75 24.55		Firm grey brown locally stained black silty sandy CLAY with decaying organic matter (roots and twigs) and pockets of sand. Sand is fine to medium. Stratum has a putrid odour. (ALLUVIUM) [Medium dense] pale grey silty fine to medium SAND	
	1.30	D				× ¹¹⁶ ×	with decaying organic matter/peat. (ALLUVIUM) Stratum is damp.	
	2.20	D		2.40	23.15	× 2. × 2.	End of pit at 2.40 m	
marks			I on presumed ro					

Project	Understa	nding Groun	al Conditions	Projec	t No.		al Pit Log	ialpit No P05A eet 1 of Date
lame:		ow Solar, S	cunthorpe	1997			Level: 25.25 26	/09/2018
ocatio	on: Scuntho	orpe, DN16	1XP				(m):	Scale 1:15
ient:	INRG S	olar Limited					2.50	ogged TF
Strike	Sample Depth	es and In S	Results	Depth (m)	Level (m)	Legend	Stratum Description	
	0.30	ES		0.40 0.50	24.85 24.75		TOPSOIL over MADE GROUND: (Comprising moderately compact brown slightly clayey very silty fir to medium Sand with very compact clasts of sandy sil MADE GROUND: (Comprising compact dark brown a black slightly clayey slightly gravelly Silt. Gravel is angular to sub-angular fine to coarse cinder). [Loose to medium dense] pale grey silty fine to mediu	t). nd
	1.00	D					(BLOWN SAND)	
	1.80 1.90	D D		1.70	23.55	X X X X X X X X X X X X X X X X X X X X	[Medium dense] grey silty fine to medium SAND with pockets of spongy dark brown pseudo-fibrous peat. (ALLUVIUM)	
				2.50	22.75		End of pit at 2.50 m	
emar	ks: Grou Monit	ndwater see	epage below 1.7 nstalled to 2.0m	m depth.				

	ntég derstanding Grou				Tri	al Pit Log	alpit No `P06 eet 1 of
roject ame: Lit	tle Crow Solar,	Scunthorpe	Projec 1997	t No.			Date 09/2018
	unthorpe, DN16	6 1XP	1007			Dimensions 2.5	Scale
	RG Solar Limite					(m): Depth	1:15 .ogged
-	amples and In		Death	Laval		2.20	TF
Strike Dep		Results	Depth (m)	Level (m)	Legend	Stratum Description	
0.3			0.40	41.47		TOPSOIL: (Comprising moderately compact brown sill fine to medium Sand). [Loose to medium dense] orange-brown locally cream silty fine to medium SAND. (BLOWN SAND) <u>MEX at 0.5m = 0.5, 1, 1.5, 2, 5, 7.5, 10, 12</u>	
1.1			1.00	40.87 40.67		[Loose to medium dense] grey silty fine to medium SAND. (WEATHERED LIAS GROUP) Soft grey mottled orange slightly sandy silty CLAY with rare organic matter. Sand is fine to medium. (WEATHERED LIAS GROUP)	1
2.0		HVP=29 HVP=42	1.70	40.17 39.67		Soft to firm grey silty CLAY. (WEATHERED LIAS GROUP)	

			ad Conditions			Tri	al Pit Log	Trialpit I TP0 Sheet 1	7
Project Name:	Little Cr	ow Solar, S		Projec	t No.		Co-ords: -	Date	
ocatio		orpe, DN16	1XP	1997			Level: 59.00 Dimensions 2.4	26/09/20 Scale	;
lient:		olar Limited					(m): Depth	1:15 Logge	
			Situ Testing	Depth Level			2.00	TF	
Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.30	ES		0.45	58.55		TOPSOIL: (Comprising moderately compact br slightly gravelly clayey sandy Silt with compact the same material. Sand is fine to medium. Gra sub-angular to sub-rounded fine to coarse lime [Medium dense] slightly clayey silty fine to coars and angular to sub-angular fine to coarse GRA limestone with medium cobble content. Cobble angular to sub-angular limestone.	clasts of avel is stone). se SAND VEL of	_
	0.80	D					(WEATHERED INFERIOR OOLITE GROUP) MEX at 0.5m = 7,13,12,Refusal		
	1.30	D		1.50	57.50				
	1.80	D					 [Medium dense] cream grey slightly clayey slig gravelly SILT. Sand is fine to medium. Gravel is to sub-angular fine to coarse siltstone. (WEATHERED INFERIOR OOLITE GROUP) 	htiy sandy s angular	
				2.00	57.00		End of pit at 2.00 m		
emarl tability	Moni	roundwater toring well i cal and stab	encountered. nstalled to 2.0m	depth.					

			ale			Tri	ial Pit Log	Trialpit No
roject			d Conditions	Projec	t No.		Co-ords: -	Sheet 1 of Date
ame:	Little Cr	ow Solar, So	cunthorpe	1997			Level: 40.56	27/09/2018
ocatio	on: Scuntho	orpe, DN16	1XP				Dimensions 2.4 (m):	Scale 1:15
lient:	INRG S	olar Limited					Depth O	Logged JB
e c	Sampl	es and In S	itu Testing	Depth	Level	Legend	Stratum Description	1
Strike	Depth	Туре	Results	(m)	(m)			
	0.20	ES					TOPSOIL: (Comprising moderately compact b slightly gravelly clayey sandy Silt. Gravel is an sub-angular fine to medium mudstone and iror rare rounded quartzite).	gular to
	0.40	D		0.30	40.26		[Medium dense] brown slightly gravelly clayey SILT with a low cobble content of sub-rounded nodules and gravel-size clasts of clay through	ironstone out. Gravel
				0.50	40.06		is angular to sub-angular fine to medium muds ironstone. (WEATHERED LIAS GROUP) Firm to stiff friable grey mottled brown slightly	sandy
	0.80	D					slightly gravelly silty CLAY with a low cobble or rounded ironstone. Gravel is angular to sub-ar to coarse mudstone and ironstone. (WEATHERED LIAS GROUP) MEX at 0.5m = 8.5.6.4.9.5.14.13,Refusal	ontent of
							Below 1.4m depth becoming very gravelly with thick lam.	inations.
	1.60	D						
				2.00	38.56	× · · · ×	End of pit at 2.00 m	
emar	ks: No g	roundwater	encountered.					

			d Conditions			Tri	al Pit Log	Trialpit N TPOS Sheet 1 o	9
Project Jame:		ow Solar, S	cunthorpe	Projec 1997	t No.		Co-ords: -	Date 26/09/20	
ocatio		orpe, DN16	1XP	1997			Level: 27.68 Dimensions 2.2	Scale	
							(m): Depth o	1:15 Logged	
lient:		olar Limited					2.60	TF	
Strike	Depth	Type	itu Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
> 0)	0.20	ES					TOPSOIL: (Comprising loose brown slightly silt medium typically fine Sand. Stratum becomes increasingly silty sand with depth).	y fine to	
				0.40	27.28		[Loose to medium dense] orange-brown slightly slightly gravelly fine to medium SAND with pocl dark grey sand and gravel. Gravel is angular to angular fine mudstone. (BLOWN SAND) <u>MEX at 0.6m = 0.5,2,10,10,4,13,12</u> ,Refusal	kets of	_
	0.80	D					Below 1.0m depth becoming wet.		
	1.20	D							
	1.50	D		1.40	26.28		Firm orange and grey slightly sandy silty CLAY. fine to medium. (WEATHERED LIAS MUDSTONES/IRONSTO		-
				1.70	25.98		[Firm to stiff] orange-brown sandy locally very s clayey fine to coarse angular to sub-angular GF mudstone and ironstone. (WEATHERED LIAS MUDSTONES/IRONSTO	RAVEL of	-
	2.00	D							
				2.60	25.08		End of pit at 2.60 m		
emar		t groundwat toring well in	er seepage at b nstalled to 2.0m	ase. depth.					3

			rale			Tri	al Pit Log Trialpit Sheet 1	0 of 1
roject lame:		ow Solar, S	cunthorpe	Projec 1997	t No.		Co-ords: - Date Level: 34.80 25/09/2	
ocatio	on: Scuntho	orpe, DN16	1XP				Dimensions 2.2 Scal (m): 1:15	
lient:	INRG S	olar Limited	1				Depth o 2.20	ed
e e	Sample	es and In S	Situ Testing	Depth	Level	Legend		
Strike	Depth	Туре	Results	(m)	(m)		TOPSOIL: (Comprising moderately compact brown	
	0.10	ES					slightly clayey silty fine to medium Sand).	
	0.50	D		0.30	34.50		[loose to medium dense] orange-brown locally slightly clayey silty fine to medium SAND with occasional very compact clasts of orange-brown silty sand. (BLOWN SAND)	
				0.70	34.10	× × × ×	MEX at 0.6m = 4,3.5,7,8,8,9,12,13 Stiff grey locally mottled pale orange-brown silty CLAY. (LIAS MUDSTONES/IRONSTONES)	_
	1.10	D	HVP=110					
	1.90 2.15	D		2.10 2.20	32.70 32.60		Medium strong yellow to orange-brown MUDSTONE and IRONSTONE. (LIAS MUDSTONES/IRONSTONES) End of pit at 2.20 m	1
emarl	Monit	roundwater toring well i	encountered. nstalled to 2.0m	depth.				:

			al Conditions			Tri	al Pit Log	11
roject	l ittle Cr	ow Solar, S		Projec	t No.		Co-ords: - Da	te
ame:				1997			Level: 44.35 26/09/ Dimensions 2.4 Sca	
ocatio	on: Scuntho	rpe, DN16	1XP				(m):	5
ient:	INRG S	olar Limited			-		Depth O 2.40 TI	
Strike		es and In S	itu Testing	Depth	Level	Legend	Stratum Description	
Str	Depth	Туре	Results	(m)	(m)		TOPSOIL: (Comprising moderately compact brown slightly clayey silty fine to medium Sand with occasional compact clasts of slightly clayey silty sand).	
	0.20	ES		0.30	44.05		[Loose to medium dense] orange-brown silty fine to medium SAND. (BLOWN SAND)	
	0.50	D					MEX at 0.5m = 2.5,3,7,12,12,Refusal	
				0.70	43.65		[Loose] cream silty fine to medium SAND. (HIGHLY WEATHERED MARLSTONE ROCK BED)	
	1.40	D					Below 1.6m depth becoming damp.	
				2.20	42.15		[Medium dense] dark grey silty fine to medium SAND.	
	2.30	D		2.40	41.95		WEATHERED LIAS ĞRÓUP)	
emar abilit	-		encountered. and collapsing b	elow 0.4m c	depth.			

			al Conditions				al Pit Log Trialpit No Sheet 1 of	•
roject lame:	Little Cro	ow Solar, S	cunthorpe	Projec 1997	ct No.		Co-ords: - Date Level: 31.29 26/09/201	8
ocatio	on: Scuntho	orpe, DN16	1XP				Dimensions 2.2 Scale (m): 1:15	
lient:	INRG S	olar Limited					Depth C Logged	
e ei	Sample	es and In S	itu Testing	Depth	Level	Logona		
Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description TOPSOIL: (Comprising moderately compact brown	
	0.20	ES		0.35	30.94		slightly clayey silty fine to medium Sand). [Medium dense] brown slightly clayey very sandy SILT.	
	0.40	U		0.50	30.79		Sand is fine to medium. (ALLUVIUM) [Medium dense] pale grey silty fine to medium SAND. (BLOWN SAND) MEX at 0.5m = 2,6.5,12.5,12,Refusal	
	1.00	D						
	1.80	D		1.60	29.69		[Medium dense] brown silty fine to medium SAND. (BLOWN SAND) Below 1.6m depth becoming wet. Below 2.0m depth becoming pale brown.	
	2.30	D		2.50	28.79		End of pit at 2.50 m	
emarl	-		encountered. and collapsing b	elow 0.5m.	I	I		

	Int	égi	rale			Tri	al Pit Log	Trialpit N	
		anding Grou	nd Conditions					Sheet 1 c	of 1
roject ame:	Little Cr	ow Solar, S	cunthorpe	Projec 1997	t No.		Co-ords: - Level: 64.77	Date 25/09/20	19
	an Countha		470	1997			Dimensions 2.2	Scale	
ocatio	on: Scuntho	orpe, DN16	TXP				(m):	1:15	
lient:	INRG S	olar Limited	I				Depth o	Logged TF	a
e e	Sampl	es and In S	Situ Testing	Depth	Level	Legend	Stratum Description		
Strike	Depth	Туре	Results	(m)	(m)				
	0.10	ES		0.25	64.52		TOPSOIL: (Comprising moderately compact b slightly gravelly clayey sandy Silt. Sand is fine medium. Gravel is fine to coarse sub-angular t rounded fine to coarse limestone and siltstone	to o sub-).	
				0.45	64.32		silty fine to medium SAND. Gravel is sub-angurounded fine to coarse limestone. (WEATHERED INFERIOR OOLITE GROUP)		
	0.70	D					[Medium dense] pale yellow-brown silty very s angular to sub-angular fine to coarse flaggy G oolitic limestone. Sand is fine to coarse. (WEATHERED INFERIOR OOLITE GROUP) <u>MEX at 0.6m = 13,8,12,Refusal</u>	anuy RAVEL of	
				0.90	63.87	X	End of pit at 0.90 m		1
									2
									3
emar tabilit	-	roundwater cal and stat	encountered.						

		ntéo	rale			Tri	al Pit Log	Trialpit No TP14
			ound Conditions				arriceuy	Sheet 1 of 1
Projec	+			Projec	ct No.		Co-ords: -	Date
Name		Crow Solar,	Scunthorpe	1997			Level: 56.60	26/09/2018
Locati	on: Scur	nthorpe, DN1	6 1XP				Dimensions 2.2 (m):	Scale 1:15
Client:		G Solar Limit	od				Depth O	Logged
							0.55	TF
Water Strike	Sar Depth		Results	Depth (m)	Level (m)	Legend	Stratum Description	
	0.20 0.40	ES D		0.35	56.25		TOPSOIL: (Comprising compact brown slightly clayey sandy Silt. Sand is fine to medium. Grave angular fine to coarse limestone). [Dense] grey angular to sub-angular COBBLES limestone with some sand and gravel. Sand is 1 medium. Gravel is angular to sub-angular fine to limestone. Some clay infili. (INFERIOR OOLITE GROUP) End of pit at 0.35 m	el is sub-
Rema			r encountered.		1		1	
	Tr	ial pit terminat	ted on limestone rocl		k			
Stabili		ertical and st						

			al Conditions			Tri	al Pit Log	5
roject lame:		ow Solar, S	cunthorpe	Projec	t No.		Co-ords: - Date	40
ocatic		rpe, DN16	170	1997			Level: 62.52 25/09/20 Dimensions 2.1 Scale	
		-					(m): Depth	d
ient:		olar Limited					2.20 TF	
Strike	Sample Depth		Results	Depth (m)	Level (m)	Legend	Stratum Description	
<u>x</u>	0.20	Type	Results	0.30	62.22		TOPSOIL: (Comprising firm to compact brown slightly gravelly sandy very clayey Silt. Sand is fine to medium. Gravel is sub-angular medium to coarse limestone).	
	0.50	D	HVP=76				slightly gravelly CLAY. Sand is fine to medium. Gravel is angular to sub-angular fine to coarse platy ironstone and siltstone. (WEATHERED LIAS GROUP) <u>MEX at 0.5m = 2.5,2.5,7,6,4.5,Refu</u> sal	
	1.00	D		0.90	61.62		Stiff grey silty CLAY. (WEATHERED COLEBY MUDSTONE)	
	1.50	D		1.20	61.32		[Dense] pale grey very gravelly fine to medium SAND. Gravel is angular fine to coarse sandstone. (WEATHERED LIAS GROUP)	
	2.00	D		1.90	60.62		[Medium dense] yellow silty fine SAND. (WEATHERED LIAS GROUP)	
	2.20	D		2.20	60.32		End of pit at 2.20 m	
	ke: No m		ancountered					:
Remar Stabilit	Trial	roundwater pit terminate	encountered. ed on sandstone le.	e rockhead.		<u> </u>		

	Int	égi	rale			Tri	al Pit Log	Trialpit N	
			nd Conditions				_	Sheet 1 c	of 1
ojec me:		ow Solar, S	cunthorpe	Projec 1997	t No.		Co-ords: - Level: 62.08	Date 27/09/20	115
catio		rpe, DN16	1VD	1997			Dimensions 2.2	Scale	
an							(m): Depth	1:15 Logged	ч —
ent:	INRG S	olar Limited			1		1.80	JB	1
Strike		T T	Situ Testing	Depth	Level	Legend	Stratum Description		
ģ	Depth	Туре	Results	(m)	(m)		TOPSOIL: (Comprising moderately compact bro	wn	
	0.20	ES D		0.30	61.78		Iter Soft State (Compare lay compare lay com	I with ne to les are slightly rse	
	1.50	D		1.80	60.28		Between 0.7-1.2m depth high cobble content of sub-angula limestone.	ar	
				1.80	60.28		End of pit at 1.80 m		
emai	ks: No gi	roundwater	encountered.						

			rale			Tri	al Pit Log	Trialpit N TP1	7
Project		ow Solar, S		Projec	t No.		Co-ords: -	Date	
Name:			-	1997			Level: 55.16 Dimensions 2.8	12/09/20 Scale	
Locatio	on: Scuntho	orpe, DN16	1XP				(m): Depth	1:15	
Client:	INRG S	olar Limited	1					Logged TF	u
Water Strike			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Šŭ≦	Depth	Туре	Results	(11)	(11)		TOPSOIL: (Comprising loose dull orange-browr	n slightly	
	0.10	ES					gravelly clayey silty fine to medium Sand. Grave angular to sub-angular fine to coarse of limestor	el is	
				0.16	55.00		[Medium dense] brown slightly gravelly clayey s SILT. Sand is fine. Gravel is angular to sub-angu	andy	
	0.30	D					to coarse of limestone. (WEATHERED INFERIOR OOLITE GROUP)		
	0.50	D		0.42	54.74		MEX at 0.4m = 9,7,11,Refusal [Medium dense] orange-brown slightly clayey sl		1
	0.50						gravelly silty fine SAND. Gravel is angular to su fine to coarse of limestone. (WEATHERED INFERIOR OOLITE GROUP)	p-angular	
				0.62	54.54	× ×	[Medium dense] pale grey-brown very silty very fine to medium SAND. Gravel is angular to sub-	gravelly	
	0.70	D				$\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	fine to coarse of oolitic limestone. (WEATHERED INFERIOR OOLITE GROUP)	angulai	
							(WEATHERED IN ERIOR COETE GROOP)		
				1.00	54.16	× × ×	[Dense] pale grey-brown and cream very silty v		1
						م× ° م× ۹	angular to sub-angular fine to coarse flaggy GR siltstone with high cobble content. Sand is fine t	o	
	1.20	D				م× ، م× ه م	medium. Cobbles are flaggy angular to sub-ang siltstone.	jular of	
						م ×. ، مع× ۵ م	(WEATHERED INFERIOR OOLITE GROUP)		
						م × ، م× ،			
				1.46	53.70	*a ×: • a × 9	End of pit at 1.46 m		
									2
emar	ks: No a	roundwater	encountered.						3
			ed on rockhead.						
tabilit	y: Vertio	cal and stat	ole.						

		۲Á۵						Trialpit No
			rale			Tri	al Pit Log	TP18
Projec	+		ound Conditions	Projec	t No.		Co-ords: -	Sheet 1 of 1 Date
Name:		row Solar,	Scunthorpe	1997			Level: 62.37	26/09/2018
Locatio	on: Scunth	orpe, DN1	6 1XP	·			Dimensions 2.2	Scale
Client		Solar Limit					(m): Depth	1:15 Logged
Client:	_				1		1.50	TF
Water Strike	-		n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	
≥₽	Depth	Туре	Results	(,	()		MADE GROUND: (Comprising grass over wet	hay and
				0.10	62.27		bark mixture). Strata are wet.	-
	0.70	ES					MADE GROUND: (Comprising compact yellow clayey very sandy sub-angular fine to coarse G limestone with a high cobble content. Sand is f medium. Cobbles are sub-angular limestone. L areas of dark brown black rotting organic matte putrid odour [informal hardstanding]).	Fravel of - ine to - ocally -
				1.00	61.37			
	1.20	D					[Medium dense] sandy angular to sub-angular coarse GRAVEL of limestone with a high cobbl Sand is fine to coarse. Cobbles are angular to angular limestone. (WEATHERED INFERIOR OOLITE GROUP)	e content.
				1.50	60.87		End of pit at 1.50 m	
								-
								-
								2 -
								-
								-
								-
								-
								-
								-
								-
								-
								3 -
Remar			er encountered. as strata too grave	elly.	1	1	1	
Stabilit	ty: Verl	tical and st	able.					

	ial Pit Log	Trialpit No TP19 Sheet 1 of 1
Project No.	Co-ords: -	Date
1997	Level: 54.43 Dimensions 3	12/09/2018 Scale
	(m): Depth	1:15 Logged
	1.90	TF
g Depth Level Leger	d Stratum Description	
0.35 54.08	TOPSOIL: (Comprising loose brown slightly cla fine Sand with some medium sand).	/ clayey
	slightly gravelly silty fine SAND. Gravel is angul angular fine to coarse limestone. Occasional ve compact sub-rounded clasts of slightly clayey s (Ø20-100mm). (WEATHERED INFERIOR OOLITE GROUP) MEX at 0.5m = 1.5,1.5,1.5,2.2,2,Refusal	ery
	[Medium dense] dull orange-brown angular to s angular blocky COBBLES of limestone. Some of sand and very frequent gravel. Sand is fine to n Gravel is blocky angular to sub-angular fine to of limestone. (WEATHERED INFERIOR OOLITE GROUP)	lay and nedium.
5 1.27 5.16 5.1	Soft to firm orange-brown slightly silty slightly si CLAY. Sand is fine to medium. (WEATHERED INFERIOR OOLITE GROUP)	
1.70 52.73	Sond is fine to medium. (WEATHERED INFERIOR OOLITE GROUP) (Medium dense] pale brown cream clayey sand gravelly SILT. Sand is fine to medium. Gravel is	y very
1.90 52.53	angular to sub-angular fine to coarse siltstone. (WEATHERED INFERIOR OOLITE GROUP) End of pit at 1.90 m	
ēr	ered.	ered.

Understanding Ground Conditions Sheet 1 of Project No. 1997 Co-ords: Level: Date 58.56 ation: Scunthorpe, DN16 1XP Dimensions (Dimensions) 2.3 (Dimensions) Scale 115 int: INRG Solar Limited Depth Co-ords: (Dimensions) 2.3 (Dimensions) Scale 115 int: INRG Solar Limited Depth Co-ords: (Dimensions) Co-ords: (Co-ords: (Dimensions) Scale (Dimensions) Co-ords: (Comprising moderately compact brown slightly gravely vay slight fire to medum. Sand with rare coble content. Grave is angular to sub-angular fire to coase GRAVEL of angular to sub-angular fire to coase GRAVEL of angular to sub-angular lime to coase GRAVEL of angul
Interesting Level: 58.56 27/09/2016 attion: Scuthorpe, DN16 1XP Dimensions 2.3 Scale Int: INRG Solar Limited Depth Depth Legend Stratum Description 3 Samples and In Situ Testing Depth Legend Stratum Description Logged 3 Samples and In Situ Testing Depth Legend TOPSOIL: Comprising moderately compact brown slightly gravely very slightly draw very sligh
Auton. Scalinitope, DNI's IXP 1:15 Int: INRG Solar Limited Imited
Interest Solial Limited 1.60 jg Samples and in Situ Testing Depth Level (m) Legend Stratum Description 0.20 ES 0.30 58.26 TOPSOIL: (Comprising moderately compact brown slightly gravely very slightly areally very using fine to medium Sand with rare cobble content. Gravel is angular fine to coarse GRAYEL of limestone. Cobbles are angular fine to coarse GRAYEL of limestone. Stratum increases in angular fine to coarse GRAYEL of limestone. Stratum increases in angular fine to coarse GRAYEL of limestone. Stratum increases in Computer sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. Stratum increases in Computer Sub-angular fine to coarse GRAYEL of limestone. 1.00 D Image: Sub-angular fine to coarse GRAYEL of limestone. 1.50 D Image: Sub-angular fine to coarse GRAYEL of limestone. 1.60 56.96 End of pht at 1.60 m
Yest Type Results Cm Cm Cm Cm Cm 0.20 ES 0.30 58.26 TOPSOIL (Comprising moderately compact brown as sightly gravely very sith free to median Stand with rare cobble content. Carvel is angular to sub-angular fine to coarse limestone. Cobbles are angular to sub-angular fine to coarse GRAVEL of limestone. 0.40 D 0.30 58.26 Medium dense) yellow-brown clayey very sith yery sandy angular to sub-angular fine to coarse GRAVEL of limestone. Stratum increases in course with a low cobbles are angular to sub-angular fine to coarse GRAVEL of limestone. Stratum increases in course with a low cobbles are angular to sub-angular finestone. Stratum increases in course of the depth second
0.20 ES 0.40 D 0.40 D 1.00 D 1.50 D 1.50 D 1.60 56.96

			rale			Tr	ial Pit Log	Trialpit I	1
Projec	•		d Conditions	Projec	t No.		Co-ords: -	Sheet 1 o Date	
lame:		ow Solar, S	cunthorpe	1997			Level: 26.43	27/09/20	
ocatio	on: Scuntho	orpe, DN16	1XP				Dimensions 2.1 (m):	Scale 1:15	
lient:	INRG S	olar Limited					Depth 0 2.60	Logge	
. e	Sampl	es and In S	itu Testing	Depth	Level			JD	
Strike	Depth	Туре	Results	(m)	(m)	Legen	d Stratum Description		
	0.10	ES		0.20	26.23		MADE GROUND: (Comprising loose grey-brow gravelly silty Sand with fine rootlets throughout sub-rounded medium ironstone). MADE GROUND: (Comprising loose red-brown organic silty Sand).	. Gravel is	_
	0.50	D					MEX = 7,Refusal		
	1.00	ES		0.90	25.53 25.33		MADE GROUND: (Comprising red orange clay gravelly fine to medium Sand. Gravel is angula angular fine to coarse ironstone, burnt shale ar resinous slag. Stratum has a strong odour). MADE GROUND: (Comprising grey black clay gravelly Silt. Gravel is angular to sub-angular fi medium ironstone and ashy slag).	r to sub- nd ey sandy	-
	1.50	ES							
	2.40	D		2.30	24.13		 [Dense] grey brown silty sandy angular fine to GRAVEL of fossiliferous limestone. (WEATHERED LIAS MUDSTONES/IRONSTO 		_
				2.60	23.83		End of pit at 2.60 m	,	
emar	ks: Grou Trial	ndwater at 2	2.3m depth. ed on presumed	limestone r	ockhead	 			

			rale			Tri	al Pit Log	Trialpit N TP22	2
Projec	+	ow Solar, S		Projec	t No.		Co-ords: -	Sheet 1 o Date	
ame			cuntiforpe	1997			Level: 64.09	27/09/20	
ocatio	on: Scuntho	orpe, DN16	1XP				Dimensions 2.2 (m):	Scale 1:15	
lient:	INRG S	olar Limiteo	1		-		Depth 0 2.20	Logged JB	d
Strike	Sampl	es and In S	Situ Testing	Depth	Level	Legend	I Stratum Description		
Stri	Depth	Туре	Results	(m)	(m)				1
	0.10	ES					TOPSOIL with some MADE GROUND: (Comp brown slightly gravelly sandy very clayey Silt. fine to coarse limestone with rare timber, plast and a metal fragment). Between 0-0.2m depth fine rootlets.	Gravel is	
	0.40	D		0.35	63.74		[Medium dense] light brown silty gravelly SAN is angular to sub-angular fine to coarse limes (WEATHERED INFERIOR OOLITE GROUP)	D. Gravel tone.	
				0.55	63.54		[Dense] yellow-brown slightly silty sandy angu coarse GRAVEL of limestone with a high cobb of angular limestone. Sand is fine to medium. (WEATHERED INFERIOR OOLITE GROUP) <u>MEX at 0.55m = Refusal</u>	lar fine to le content	
	1.00	D							
	1.70	D		1.50	62.59		[Dense] yellow-grey slightly sandy silty sub-ar to coarse GRAVEL of weathered siltstone with cobble content of siltstone. (WEATHERED INFERIOR OOLITE GROUP)	igular fine a low	-
				2.20	61.89		End of pit at 2.20 m		
Remai	Trial	roundwater pit terminat	encountered. ed on siltstone r	ockhead.					L

Appendix E

Borehole Logs

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Integrale Limited, Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP United Kingdom Tel: 01275 333 036 www.integrale.uk.com

Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX United Kingdom VAT Reg. No. 609 7402 37

Tel: 01275 333036 www.integrale.uk.com

STANDARD METHODOLOGY FOR WINDOWLESS SAMPLING BOREHOLES & CONTINUOUS DYNAMIC PENETRATION TESTING (CDPT)

Windowless sampling boreholes and heavy or super heavy continuous dynamic penetration tests were sunk using a small tracked drilling and probing rig. The types of drilling are identified on each of the borehole records included as a separate appendix. The locations are given in Figure I and selected using information on the proposed redevelopment, existing buried services and structures, ongoing site use, reinstatement requirements and time constraints.

The windowless sampling technique consists of driving a hollow tube sampler with a plastic liner into the ground by repeated blows using the dynamic probing apparatus. This sampler is extracted from the ground by a pneumatically operated jack and the sample extracted from the plastic liner for logging. Deeper sections of the strata are sampled by driving successively smaller diameter samplers into the ground. If the material is suitable, the soil strength is examined using a pocket penetrometer.

Continuous dynamic probing is a simple test consisting of driving a rod, with an oversized cone point, into the ground with a uniform hammer blow. The blow count is recorded for every 100mm penetration (N100). The equipment is a machine driven unit using a 63.5kg hammer dropping through 0.75m onto 32mm diameter rods with a 1500mm² cone. The equipment confirms to the DPSH probing apparatus in Clause 3.2 of Part 9 of BS 1377 (199)). The equivalent SPT 'N' value can be estimated by multiplying the blow count by 3-5, dependant on soil characteristics. This method has been used to interpret soil strengths given on the CDPT plots.

Drilling was directed and supervised full-time by an experienced geologist who kept a record of the strata encountered, recorded the groundwater ingress and also recovered representative disturbed samples.

On completion the boreholes were either backfilled with their spoil, and if requested the surface reinstated, or a standpipe installation fitted.

The borehole records have been prepared using Gint software, taking into account both site descriptions and subsequent laboratory testing.

	ntég Ierstanding Gr				Во	reho	ole Log	Borehole N WS1 Sheet 1 of	
Project Name:	Little Crow	/ Solar,	Scunthorne	roject No. 997		Co-ords:	-	Hole Type WS	;
Location:	Scunthorp	e, DN1				Level:	47.80	Scale 1:20	
Client:	INRG Sola	ar Limit	ed			Dates:	14/11/2018 - 14/11/2018	Logged By JB	y
Well Water	-	1	n Situ Testing	Depth	Level	Legend	Stratum Description		
Strikes	Depth (m)	Туре	Results	(m)	(m)		Grass over TOPSOIL: (Comprising dense] dark brown very silty fine to Sand with fine fibrous rootlets throu	[medium medium	
	1.00		SPT (3,3/3,3,2,2) N = 10	0.40	47.40		[Medium dense becoming dense] o silty fine to medium SAND. (BLOWN SAND)	range-brown	1 -
				1.40	46.40		Firm to stiff grey mottled orange-bro sandy silty CLAY. (WEATHERED LIAS GROUP) From 1.4 to 1.6m: Stratum is very sandy. Below 1.6m: Stratum is fissured.	wn slightly	
	2.00 2.00 2.25	D	SPT (2,1/2,2,3,4) N = 11	2.00	45.80		Firm to stiff grey mottled reddish-bro iron-stained slightly sandy slightly g Gravel is angular to subangular fine platy siltstone. Gravel content and o increase with depth. (WEATHERED LIAS GROUP)	to medium	2
	2.60	D							
	3.00		SPT (2,2/3,4,5,7) N = 19	3.00	44.80		End of borehole at 3.00 m		3 -
Remarks No groundwate Monitoring wel			oth.	<u> </u>	<u> </u>				4

roject Name: ocation: lient: Well Water Strikes	Scunthorpe INRG Sola Samples	e, DN16	Scuntnorpe	Project No. 1997		Co-ords:	-	Sheet 1 of Hole Type WS	
lient: Well Water	INRG Sola			1007					
Water	Samples	r Limite				Level:	47.21	Scale 1:20	
veilla. –	-		ed			Dates:	14/11/2018 - 14/11/2018	Logged By	y
Strikes		and Ir	n Situ Testing	Depth	Level	Logond		JB	
	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description Grass over TOPSOIL: (Comprising dense] dark brown very silty fine to Sand with fine fibrous rootlets throu	[medium medium	
				0.40	46.81		[Medium dense] becoming dense o silty fine to medium SAND. (BLOWN SAND)	range-brown	1 -
	1.90	D		1.40	45.81		Firm to stiff grey mottled orange-bro sandy sitty CLAY. (WEATHERED LIAS GROUP) From 1.4 to 1.6m: Stratum is very sandy. Below 1.6m: Stratum is fissured.	own slightly	
	2.50	D		2.00	45.21		Firm to stiff grey mottled reddish-bro iron-stained slightly sandy slightly g Gravel is angular to subangular fine platy siltstone. Gravel content and o increase with depth. (WEATHERED LIAS GROUP)	ravelly CLAY. e to medium	2
	2.90	D							
				3.00	44.21		End of borehole at 3.00 m		3 -

				Bo	reho	ole Log	Borehole N WS3 Sheet 1 of	
Little Crow	Solar	Scunthorne			Co-ords:	-	Hole Type WS	е
Scunthorp	e, DN′	16 1XP			Level:	61.75	Scale 1:20	
INRG Sola	ar Limit	ted			Dates:	14/11/2018 - 14/11/2018	Logged B JB	y
	1		Depth	Level	Legend	Stratum Description	1	
0.80 1.00	D	Results SPT (4,4/4,4,4,4) N = 16	0.28	61.47		slightly sandy slightly gravelly claye fine fibrous roots throughout. Grave subangular fine to medium sandsto fragments and charcoal). Firm to stiff fissured yellowish-brow sandy slightly gravelly becoming gr Gravel is angular to subangular fine	y Silt with I is angular to ne, ceramic n slightly avelly CLAY. e to coarse	
1.80	D		1.35	60.40				
2.00		SPT (8,10/8,10,12,20 for 70mm) N = 50	2.00	59.75		End of borehole at 2.00 m		-
	Little Crow Scunthorp INRG Sola Samples Depth (m) 0.80 1.00	Ititle Crow Solar Scunthorpe, DN INRG Solar Limit Samples and Depth (m) Type 0.80 1.00 1.80	Inte Crow Solar, Scunthorpe Scunthorpe, DN16 1XP INRG Solar Limited Samples and In Situ Testing Depth (m) Type Results 0.80 D	Ittle Crow Solar, Scunthorpe Project No. 1997 Scunthorpe, DN16 1XP INRG Solar Limited Samples and Information Informatio Information Informatio Information Informatio Informatio	Security of the second conditions Project No. 1997 Little Crow Solar, Scunthorpe Project No. 1997 Scunthorpe, DN16 1XP INRG Solar Limited Samples and Limited Depth (m) Type Results 0.28 0.80 D 1.00 SPT (4,4/4,4,4,4) N = 16 1.80 D 1.80 D 2.00 SPT (8,10/8,10,12,20) 2.00	Interstanding Ground Conditions Little Crow Solar, Scunthorpe Project No. 1997 Co-ords: Scunthorpe, DN16 1XP Level: INRG Solar Limited Depth (m) Level (m) Dates: Samples and In Situ Testing Depth (m) Depth Type Depth (m) Level (m) Legend 0.28 61.47	Troject No. 1997 Co-ords: - Little Crow Solar, Scunthorpe Project No. 1997 Co-ords: - Scunthorpe, DN16 1XP Level: 61.75 INRG Solar Limited Dates: 14/11/2018 - 14/11/2018 Samples and In Situ Testing Depth (m) Depth (m) Level (m) Coropose Coropose 0.28 61.47 Crop over TOPSOL: (Comprising of slightly sandy slightly gravelly clays fine fibrous rots throughout. Grave subangular fine to medium sandsto fragmens and charcoal). Crop over TOPSOL: (Comprising of slightly sandy slightly gravelly clays fine fibrous rots throughout. Grave subangular fine to medium sandsto fragmens and charcoal). 0.80 D Strift to very stift thinly to thickly lamit sandy gravelly CLAY. Gravel is fine platy siltstone with lesser inorstone crystalline limestone. (WEATHERED LIAS GROUP) 1.80 D Inor SPT (8,10/8,10,12,20 2.00 59.75	Iterstanding Ground Conditions Sheet 1 of Project No. 1997 Co-ords: Co-ords: - Hole Type WS Scunthorpe, DN16 1XP Level: 61.75 1/20 INRG Solar Limited Dates: 14/11/2018 - 14/11/2018 Logged B JB Samples and In Situ Testing Depth (m) Depth (m) Depth (m) Level (m) Level (m) Coport TOPSOIL: Comprising dark brown slightly sandy slightly gravely clayey Silt with fine fibrous roots throughout. Gravel is angular to subangular fine to bubangular fine to coarse platy slightly gravely clayey Silt with fine fibrous roots throughout. Gravel is angular to subangular fine to subangular fine to coarse platy slightly gravely clayey Silt with fine fibrous roots throughout. Gravel is angular to subangular fine to subangular fine to coarse platy slightly gravely becoming gravely [CLAY. Gravel is angular to subangular fine to coarse platy slightly gravely becoming gravely [CLAY. Gravel is angular to subangular fine to coarse platy slightly gravely becoming gravely [CLAY. Gravel is angular fine to coarse platy slightly gravely becoming gravely [CLAY. Gravel is fine to medium platy slightly gravely becoming gravely [CLAY. Gravel is fine to medium platy slightly gravely become and crystalline limestone. (WEATHERED LIAS GROUP) 1.80 D SPT (8,10/8,10,12.20 2.00 59.75

				Bo	reho	ole Log	Borehole No WS4 Sheet 1 of
oject Name:	5	Solar Scunthorpe	oject No. 97		Co-ords:	_	Hole Type WS
cation:	Scunthorpe,		97		Level:	64.27	Scale
ent:	INRG Solar I				Dates:	14/11/2018 - 14/11/2018	1:20 Logged By
		and In Situ Testing	D "		Dales.	14/11/2010 - 14/11/2010	JB
ell Water Strikes	-	ype Results	Depth (m)	Level (m)	Legend	Stratum Description	1
	0.84	SPT (10,14/27,23 for 35mm) N = 57	0.25 0.80 0.85	64.02 63.47 63.42		Crop over TOPSOIL: (Comprising c slightly sandy slightly gravelly clayed fine fibrous roots throughout. Grave subangular fine to medium sandsto and glass fragments with rare timber Firm becoming stiff friable yellowish slightly gravelly sandy silt. Gravel is subangular fine to coarse sandston limestone. Gravel content and com increase with depth. (WEATHERED INFERIOR OOLITE Strong grey oolitic LIMESTONE. (INFERIOR OOLITE GROUP) End of borehole at 0.85 m	y Silt with el is angular to ne, ceramic er). I-brown s angular to e and oolitic petence
narks	er encountered.						

	ntég	Ĵ٦	əle		Bo	reho	ole Log	Borehole No WS4A
	derstanding Gr			Desised No			5	Sheet 1 of
oject Name	: Little Crow	/ Solar,	Scunthorpe	Project No. 1997		Co-ords:	-	Hole Type WS
cation:	Scunthorp	e, DN1	6 1XP			Level:	64.20	Scale 1:20
ent:	INRG Sola	ar Limit	ed			Dates:	14/11/2018 - 14/11/2018	Logged By JB
ell Water Strikes		1 1	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptio	n
	Depth (m)	D	Results	0.25	63.95 63.30 63.20		Crop over TOPSOIL: (Comprising slightly sandy slightly gravelly clay fine fibrous roots throughout. Grav subangular fine to medium sandsto and glass fragments with rare timb Firm to stiff friable yellowish-brown gravelly SILT. Gravel is angular to fine to coarse sandstone and limes (WEATHERED INFERIOR OOLITF <i>From 0.25 to 0.3m: 1 No. angular cobble of</i> Weak yellow-grey sandy oolitic LIN (INFERIOR OOLITE GROUP) End of borehole at 1.00 n	ey Silt with el is angular to one, ceramic er). sightly sandy subangular stone. E GROUP) f limestone.
		1						

	Understanding Ground Conditions				Bo	reho	ole Log	Borehole No WS5 Sheet 1 of 1	
Project Name				Project No. 1997		Co-ords:	-	Hole Type WS	
Location:	Scunthorp	e, DN16	6 1XP	1001		Level:	25.40	Scale 1:20	
Client:	INRG Sola	ar Limite	ed.			Dates:	14/11/2018 - 14/11/2018	Logged By JB	
Well Water		<u>г г</u>	n Situ Testing	Depth	Level	Legend	Stratum Descriptior	1	
Well Strikes	Depth (m) 0.90 1.50 2.10	Type D D D	Results	0.25 0.25 0.80 1.10 2.00 2.15	25.15 24.60 24.30 23.40 23.25	Legend	Stratum Description Crop over TOPSOIL: (Comprising [dense] dark brown silty fine to med fine fibrous roots throughout). [Loose to medium dense] brown silt medium SAND. (BLOWN SAND) Soft spongy black mottled dark grey pseudofibrous PEAT. (ALLUVIUM) [Medium dense] dark grey slightly of fine to medium SAND with rotting m putrid odour throughout. (ALLUVIUM) Friable spongy black mottled dark to pseudofibrous PEAT. (ALLUVIUM) [Medium dense] grey silty fine to m (HIGHLY WEATHERED LIAS MUD	medium ium Sand with ty fine to y organic silty natter and a	2
Remarks No groundwa Hole collapsir Monitoring we		ow 2.0m	I.	3.00	22.40		End of borehole at 3.00 m		3

						Во	reho	ole Log	Borehole N WS6 Sheet 1 of	
Projec	t Name:	Little Crow	/ Solar,	Scunthorpe	Project No. 1997		Co-ords:	-	Hole Type WS	е
Locatio	on:	Scunthorp	e, DN1	6 1XP			Level:	27.46	Scale 1:20	
Client:		INRG Sola	ar Limit	ed			Dates:	15/11/2018 - 15/11/2018	Logged B JB	y
Well	Water Strikes		1	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	n	
		Depth (m) 0.10	Type D	Results				Grass over TOPSOIL: (Comprising brown very silty fine to medium Sa fibrous rootlets throughout).	[loose] dark nd with fine	
		0.30	D		0.25	27.21		[Loose] light brown slightly silty fine SAND.	e to medium	-
					0.42	27.04		(BLOWN SAND) [Loose] reddish-brown slightly silty medium SAND. (BLOWN SAND)		1
					1.40	20.00		[Medium dense] grey very silty fine SAND. (BLOWN SAND)	to medium	
		1.75	D		1.67	25.79	x atta stata	Soft spongy black slightly sandy ar PEAT. (ALLUVIUM/RECENT DEPOSITS)		2
					2.10	25.36		Firm friable bluish-green grey sligh slightly gravelly glauconitic CLAY. (HIGHLY WEATHERED LIAS MUE From 2.1 to 2.15m: Band of firm to stiff ora gravelly sandy CLAY. Gravel is angular to s medium ironstone.	STONES) nge-brown slightly	-
		2.70	ES		2.50	24.96		[Dense] blueish-green mottled brow angular to subangular fine to coars fossiliferous limestone and lesser i (WEATHERED LIAS MUDSTONES) IRONSTONES) Below 2.65m: Stratum is stained.	e GRAVEL of ronstone.	-
					3.00	24.46		End of borehole at 3.00 m	1	3
Remar No gro		er encountere	ed.			<u> </u>				4

	lr	ntég	Ĵ٦	əle		Во	reho	ole Log	Borehole N	
		lerstanding Gr							Sheet 1 of	
Projec	t Name:	Little Crow	/ Solar,	Scunthorpe	Project No. 1997		Co-ords:	-	Hole Type WS	е
Locatio	on:	Scunthorp	e, DN1	6 1XP	1		Level:	26.46	Scale	
							D. L.		1:20 Logged B	Sy
Client:		INRG Sola				1	Dates:	15/11/2018 - 15/11/2018	JB	1
Well	Water Strikes	Sample: Depth (m)	s and I Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descriptior	ı	
		0.10 0.65	D		0.47	25.99		Grass over TOPSOIL: (Comprising dense] dark brown very silty fine to Sand with fine fibrous rootlets throu [Medium dense] brown silty fine to o with rare angular to subangular fine quartzite. (BLOWN SAND)	medium ighout). coarse SAND	
	▼	1.50	D		1.38	25.08		Below 1.0m: Stratum is wet. [Medium dense becoming dense] d becoming greyish-brown slightly org silty fine to medium SAND. Organic increases with depth. (ALLUVIUM/RECENT DEPOSITS) From 1.38 to 1.44m: Band of firm dark brow amorphous PEAT. From 1.7 to 1.75m: Band of spongy black s PEAT.	ganic clayey content wn very sandy	1
					2.10	24.36		Firm friable bluish-green grey slight slightly gravelly glauconitic CLAY. (HIGHLY WEATHERED LIAS MUD		2
					2.50	23.96		[Dense] blueish-green mottled brow angular to subangular fine to coarse fossiliferous limestone. (WEATHERED LIAS MUDSTONES IRONSTONES)	e GRAVEL of	
					3.00	23.46		End of borehole at 3.00 m		3
Rema	ſks									4 -
Hole c	ollapsing	eepage at 1. g back in belo l installed to	ow 2.0r	n. epth.						

	lr	ntég)ra	əle		Во	reho	ole Log	Borehole N	
		lerstanding Gr		onditions					Sheet 1 of	
Projec	t Name:	Little Crow	/ Solar,	Scunthorpe	Project No. 1997		Co-ords:	-	Hole Type WS	Э
Locatio	on:	Scunthorp	e, DN1	6 1XP			Level:	26.89	Scale 1:20	
Client:		INRG Sola	ar Limit	ed		I	Dates:	15/11/2018 - 15/11/2018	Logged B JB	у
Well	Water Strikes	Samples Depth (m)	s and I Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	I	
		0.10	D	Results				Grass over TOPSOIL: (Comprising dense] dark brown very silty fine to Sand with fine fibrous rootlets throu	medium	
					0.25	26.64		[Loose] light brown slightly silty fine SAND. (BLOWN SAND)	to medium	
		0.90	D		0.45	26.44		[Loose] reddish-brown slightly silty f medium SAND. (BLOWN SAND)	fine to	
					1.05	25.84		[Medium dense] greyish-brown slig! becoming silty fine to medium SANI (ALLUVIUM/RECENT DEPOSITS) From 1.3 to 1.45m: Stratum contains appre- matter. From 1.35 to 1.6m: Stratum is stained dark	D. ciable organic	1
		1.50	D		1.65	25.24		matter.	with organic	-
		1.75	D		1.05	25.24		Soft blueish-grey glauconitic CLAY. (HIGHLY WEATHERED LIAS MUD	STONES)	
		2.50	D		1.85	25.04		[Dense] blueish-green silty sandy a subangular fine to coarse GRAVEL fossiliferous limestone. (WEATHERED LIAS MUDSTONES IRONSTONES) From 2.0 to 2.05m: Band of brown CLAY.	of	2
					3.00	23.89		Ēnd of borehole at 3.00 m		3
	undwate	er encountere Il installed to 2		epth.	1	1				I

					Во	reho	ole Log	Borehole N WS9 Sheet 1 of	
Project Name:			Scunthorpe	Project No. 1997		Co-ords:	-	Hole Type WS	
Location:	Scunthorp	e, DN16	6 1XP	1007		Level:	26.54	Scale 1:20	
Client:	INRG Sola	ar Limite	d			Dates:	15/11/2018 - 15/11/2018	Logged B JB	8y
Well Water		<u>г г</u>	Situ Testing	Depth	Level	Legend	Stratum Description		
Well Strikes	Depth (m) 0.80 1.25 1.75 2.25 2.50	Type D D D D D	Results	2.60	26.29 26.09 25.89 25.54 25.04 23.94	Legend	Stratum Description Grass over TOPSOIL: (Comprising dense] dark brown very silty fine to Sand with fine fibrous rootlets throu [Loose] light brown slightly silty fine SAND. (BLOWN SAND) [Loose] reddish-brown slightly silty fine dium SAND. (BLOWN SAND) Spongy friable black locally iron-sta sandy pseudofibrous PEAT. (ALLUVIUM/RECENT DEPOSITS) Soft blueish-green glauconitic CLAN (HIGHLY WEATHERED LIAS MUD) <i>From 1.0 to 1.05m: Band of orange-brown of</i> [Dense] greenish-grey locally staine sandy angular to subangular fine to GRAVEL of fossiliferous limestone a ironstone. (WEATHERED LIAS MUDSTONES IRONSTONES)	[medium medium ghout). to medium fine to ined very 	
Remarks No groundwat Refused on as Monitoring we	sumed limest	tone roc							3 -

Appendix F

In-Situ Testing (Permeability & CBRs)

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Integrale Limited, Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP United Kingdom Tel: 01275 333 036 www.integrale.uk.com

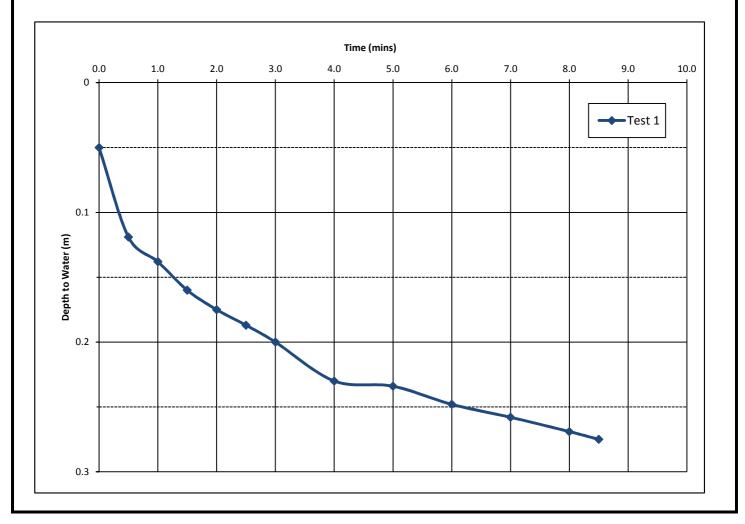
Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX United Kingdom VAT Reg. No. 609 7402 37

Tel: 01275 333036 www.integrale.uk.com

STANDARD METHODOLOGY FOR SOAKAWAY TESTING

Some trial pits also include soakaway testing in order to assess the soils permeability for design of stormwater drainage. The soakaway tests were completed in accordance with BRE Digest 365 (September 1991). This included excavation of pits to generally 1-2m depth, which were then filled with water on one to three occasions depending on the rate of infiltration. The water was supplied by a water bowser and discharged into the pits using a centrifugal pump. The falling head was recorded and therefore the rate of infiltration into the soils beneath.

The soakaway results have been prepared using a Microsoft Excel spreadsheet.


<u>Intégrale</u> **Understanding Ground Conditions**

Suite 7, Westway Farm Business Park Wick Road **Bishop Sutton** BS39 5XP Tel: 01275 333 036 www.integrale.uk.com

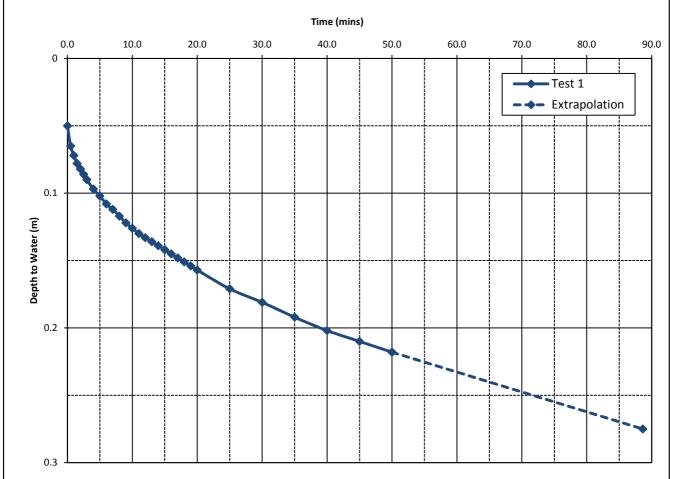
Job No:	1997	7 Soil Infiltration Rate Test						
		BRE	365 (2007)	Soakaway D	esign			
Job Name:	Little Crow, Scun	Little Crow, Scunthorpe			Hole:	TPI		
Prepared By:	JB	Date:	25/09/2018		Sheet:	l of l		
Checked By:	DRAFT	Date:	DRAFT					
Length (m):	25/09/2018 0.30	Width (m):	0.30	Depth	ı (m):	0.35		
		Width (m):	0.30 Test l	Depth Test 2	ı (m): Test 3	0.35		
Length (m): Remarks:		Width (m):		1	T	0.35		
Length (m): Remarks:	0.30 age Depth _{75-25%} (m)	Width (m):	Test I	Test 2	Test 3	0.35		
Length (m): Remarks: Effective Stor A = Surface A	0.30 age Depth _{75-25%} (m)	Width (m):	Test I 0.15	Test 2 N/A	Test 3	0.35		
Length (m): Remarks: Effective Stor A = Surface A	0.30 age Depth _{75-25%} (m) rea _{50%} (m ²) Storage Volume _{75-25%} (m ³)	Width (m):	Test I 0.15 0.27	Test 2 N/A N/A	Test 3 N/A N/A	0.35		

Soil Infiltration Rate (m/s)

I.06E-04

Understanding Ground Conditions

No:	1997		Soil I	Soil Infiltration Rate Test						
			BRE 3	365 (2007)	Soakaway D	esign				
Name:	Little Cro	w, Scunthorpe				Hole:	TP7			
pared By:	JB		Date:	26/09/2018		Sheet:	l of l			
ecked By:	DRAFT		Date:	DRAFT						
e of Test: 26	5/09/2018									
gth (m):	0.30	Width	ı (m):	0.30	Dept	h (m):	0.30			
narks:					1					
				Test I	Test 2	Test 3				
	e Depth _{75-25%} (m)			0.15	N/A	N/A				
A = Surface Are		(m ³)		0.26	N/A N/A	N/A N/A				
t = Time _{75-25%} (n	orage Volume ₇₅₋₂₅ nins)	_‰ (m)		56.6	N/A N/A	N/A N/A	—			
Soil Infiltration				I.45E-05	N/A	N/A				
			Т	ime (mins)						
0.0 0 	10.0	20.0		i me (mins)).0 40.1	0 50.0	60.0	70.0			
	10.0	20.0			0 50.0	60.0	70.			
	10.0	20.0			0 50.0					
	10.0	20.0			0 50.0	Test 1				
	10.0	20.0			0 50.0	Test 1				
	10.0	20.0			0 50.0	Test 1	70.0			
0.1	10.0	20.0			0 50.0	Test 1				
0.1	10.0	20.0			0 50.0	Test 1				
0.1	10.0	20.0			0 50.0	Test 1				
0.1		20.0			0 50.0	Test 1				
0 Depth to Water (m)		20.0			0 50.0	Test 1				
0.1		20.0			0 50.0	Test 1				
0 Depth to Water (m)		20.0			0 50.0	Test 1				
0 Depth to Water (m)		20.0			0 50.0	Test 1				
0 Depth to Water (m)						Test 1				
0 Depth to Water (m)						Test 1				


Understanding Ground Conditions

ob No:	1997	Soil	oil Infiltration Rate Test					
		BRE	365 (2007)	Soakaway D	Design			
ob Name:	Little Crow, Scur	nthorpe			Hole:	TP8		
repared By:	TF	Date:	Date: 27/09/2018		Sheet:	l of l		
Checked By:	DRAFT	Date:	DRAFT					
			1		L. L.			
ate of Test: 27	//09/2018							
ength (m):	0.30	Width (m):	0.30	Depth	ı (m):	0.30		
emarks:								
			Test I	Test 2	Test 3			
Effective Storage	e Depth _{75-25%} (m)		0.15	N/A	N/A			
A = Surface Area	a _{50%} (m²)		0.27	N/A	N/A			
	orage Volume _{75-25%} (m ³)		0.01	N/A	N/A			
t = Time _{75-25%} (m			4.5	N/A	N/A			
Soil Infiltration I	Rate (m/s)		1.85E-04	N/A	N/A			
Soli Infiltrat	ion Rate (m/s)			I.85E-04				
	ion Rate (m/s)		Time (mins)					
0.0	ion Rate (m/s)		Time (mins) 5.0			10.0		
	ion Rate (m/s)							
0.0	ion Rate (m/s)					10.0 Fest 1		
0.0								
0.0								
0.0								
0.0								
0.0								
0.0								
0.0								
0.0 0 0 0 0 0 0 0 0 0								
0.0								
0.0 0 0 0 0 0 0 0 0 0								
0.0 0 0 0 0 0 0 0 0 0								
0.0 0 0 0 0 0 0 0 0 0								
0.0 0 0 0 0 0 0 0 0 0								

<u>Intégrale</u> Understanding Ground Conditions

ob No:	1997	Soil I	nfiltration I	Rate Test			
		BRE	865 (2007)	Soakaway D	Design		
ob Name:	Name: Little Crow, Scun				Hole:	ТР9	
repared By:	JB	Date:	26/09/2018		Sheet:	I of I	
Checked By:	DRAFT	Date:	DRAFT				
					L		
Date of Test: 2	6/09/2018						
ength (m):	0.30	Width (m):	0.30	Depth	(m):	0.35	
emarks:							
			Test I	Test 2	Test 3		
Effective Storag	e Depth _{75-25%} (m)		0.15	N/A	N/A		
A = Surface Are	a _{50%} (m ²)		0.27	N/A	N/A		
V = Effective St	orage Volume _{75-25%} (m ³)	0.01	N/A	N/A		
t = Time _{75-25%} (r	nins)		78.9	N/A	N/A		
	Rate (m/s)		1.06E-05	N/A	N/A		
Soil Infiltration	()						

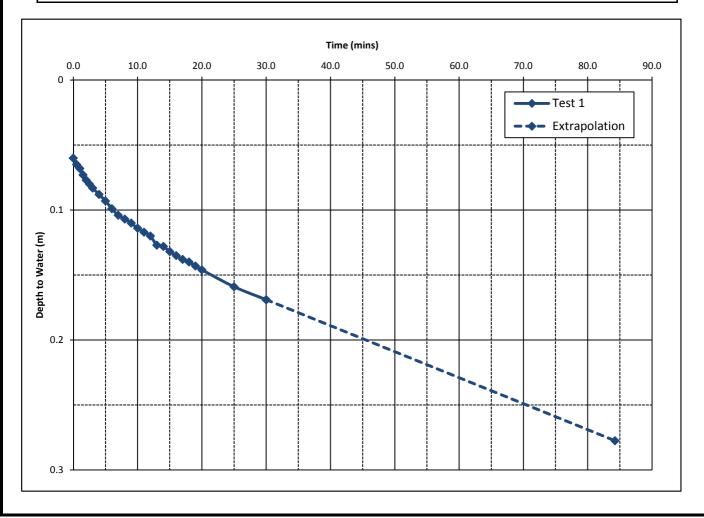
0.3

Understanding Ground Conditions

Suite 7, Westway Farm Business Park Wick Road **Bishop Sutton** BS39 5XP Tel: 01275 333 036 www.integrale.uk.com

-

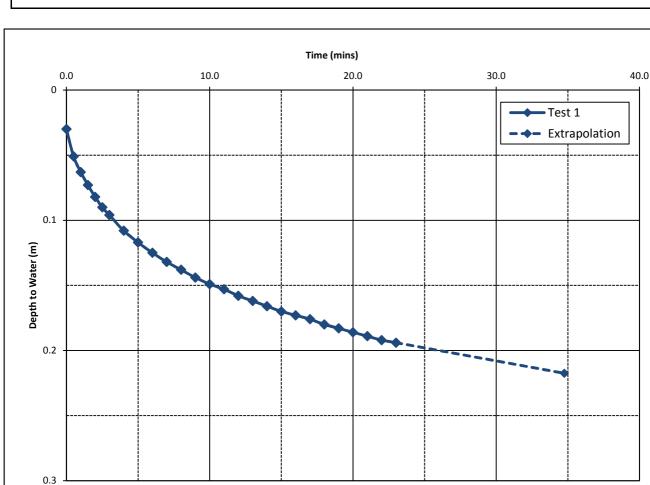
ob No:	1997		Soil	Infiltra	tion Ra	te Test			
			BRE	365 (2	007) Sc	akaway	/ Desig	gn	
ob Name:	Little Crow	, Scunthorp	e					Hole:	TPI
Prepared By:	JB		Date:	25/09	/2018			Sheet:	l of l
Checked By:	DRAFT		Date:	Date: DRAFT					
				•					
Date of Test: 2	5/09/2018								
Length (m): Remarks:	0.30	Wie	dth (m):	0.30)	D	epth (m):		0.35
vemarks:				Test	I	Test 2		Test 3	
Effective Storag	e Depth _{75-25%} (m)			0.16		N/A		N/A	
A = Surface Are	ea _{50%} (m ²)			0.28		N/A		N/A	
V = Effective St	orage Volume ₇₅₋₂₅₅	_% (m³)		0.01		N/A		N/A	
t = Time _{75-25%} (r	nins)			81.7		N/A		N/A	
Soil Infiltration	Rate (m/s)			1.03E-0	E	N/A		N/A	
Soil Infiltra	tion Rate (m/	s)		1.03E-(I.03E	-05		
Soil Infiltra		s)					.05		
0.0 1		s) 30.0	40.0	Time (mins) 50.0	60.0		- 05 80.0	90.0	100.0
	tion Rate (m/			Time (mins)		I.03E			100.0
0.0 1	tion Rate (m/			Time (mins)		I.03E			100.0
0.0 1	tion Rate (m/			Time (mins)		I.03E		90.0	100.0
0.0 1	tion Rate (m/			Time (mins)		I.03E		90.0	100.0
0.0 1	tion Rate (m/			Time (mins)		I.03E		90.0	
0.0 1	tion Rate (m/			Time (mins)		I.03E		90.0	
	tion Rate (m/			Time (mins)		I.03E		90.0	
	tion Rate (m/			Time (mins)		I.03E		90.0	
	tion Rate (m/			Time (mins)		I.03E		90.0	
	tion Rate (m/			Time (mins)		I.03E		90.0	
	tion Rate (m/			Time (mins)		I.03E		90.0	


Understanding Ground Conditions

ob No:	1997	Soil I	nfiltration l	Rate Test		
		BRE	365 (2007)	Soakaway D	Design	
ob Name:	Little Crow, Scun	ithorpe			Hole:	TPI3
Prepared By:	JB	Date:	Date: 25/09/2018		Sheet:	
Checked By:	DRAFT	Date:	Date: DRAFT			
			ł		<u> </u>	
Date of Test: 25/	09/2018					
_ength (m): 0	0.32	Width (m):	0.30	Depth	ו (m):	0.30
Remarks:					<u> </u>	
			Test I	Test 2	Test 3	
Effective Storage			0.14	N/A	N/A	
A = Surface Area			0.27	N/A	N/A	
	rage Volume _{75-25%} (m ³)		0.01	N/A	N/A	
t = Time _{75-25%} (mi			17.7	N/A	N/A	
Soil Infiltration Ra	ate (m/s)	L	4.70E-05	N/A	N/A	
0.0		Tir	ime (mins) 10.0			20.0
0 0.1 0.1 0.0 0.0 0.2						
0.3					 Test 1 Extrapolati 	ion

<u>Intégrale</u> Understanding Ground Conditions

Job No:	1997	Soil	Infiltration I	Rate Test			
		BRE	365 (2007)	Soakaway D	esign		
Job Name:	Little Crow, Scu	nthorpe			Hole:	TPI4	
Prepared By:	JB	Date:	26/09/2018		Sheet:	l of l	
Checked By:	DRAFT	Date:	DRAFT				
Date of Test: Length (m): Remarks:	26/09/2018 0.30	Width (m):	0.30	Depth	(m):	0.35	
Length (m):		Width (m):	0.30 Test I	Depth Test 2	(m): Test 3	0.35	
Length (m): Remarks:		Width (m):		•		0.35	
Length (m): Remarks:	0.30 ge Depth _{75-25%} (m)	Width (m):	Test I	Test 2	Test 3	0.35	
Length (m): Remarks: Effective Stora A = Surface An	0.30 ge Depth _{75-25%} (m)		Test I 0.15	Test 2 N/A	Test 3 N/A	0.35	
Length (m): Remarks: Effective Stora A = Surface An	0.30 ge Depth _{75-25%} (m) rea _{50%} (m ²) torage Volume _{75-25%} (m ³)		Test I 0.15 0.26	Test 2 N/A N/A	Test 3 N/A N/A	0.35	

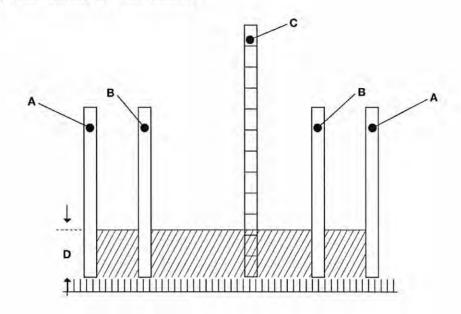


Intégrale Understanding Ground Conditions

Suite 7, Westway Farm Business Park Wick Road Bishop Sutton BS39 5XP Tel: 01275 333 036 www.integrale.uk.com

Job No:	1997	Soil I	Soil Infiltration Rate Test						
		BRE	365 (2007)	Soakaway D	esign				
Job Name:	Little Crow, Scunt	horpe:			Hole:	TPI8			
Prepared By:	JB	Date:	25/09/2018		Sheet:	l of l			
Checked By:	DRAFT	Date:	DRAFT						
Date of Test: Length (m):	25/09/2018 0.30	Width (m):	0.30	Depth	(m):	0.28			
		Width (m):							
Length (m): Remarks:	0.30	Width (m):	0.30 Test I 0.13	Depth Test 2 N/A	(m): Test 3				
Length (m): Remarks:	0.30 age Depth _{75-25%} (m)	Width (m):	Test I	Test 2	Test 3				
Length (m): Remarks: Effective Stor A = Surface A	0.30 age Depth _{75-25%} (m)	Width (m):	Test I 0.13	Test 2 N/A	Test 3				
Length (m): Remarks: Effective Stor A = Surface A	0.30 age Depth _{75-25%} (m) area _{50%} (m ²) Storage Volume _{75-25%} (m ³)	Width (m):	Test I 0.13 0.24	Test 2 N/A N/A	Test 3 N/A N/A				

Soil Infiltration Rate (m/s)


2.44E-05

Understanding Ground Conditions

lo: 1997		Soil I	Soil Infiltration Rate Test						
		BRE	365 (2007)	Soakaway D	Design				
Name:	Little Crow, Scunth	norpe			Hole:	TP21			
epared By:	TF	Date:	27/09/2018		Sheet:	l of l			
ecked By:	DRAFT	Date:	DRAFT						
e of Test: 27/09/	2018								
gth (m): 0.30)	Width (m):	0.30	Depth	(m):	0.32			
narks:					1				
			Test I	Test 2	Test 3				
Effective Storage De			0.15	N/A	N/A				
A = Surface Area _{50%}			0.27	N/A	N/A				
V = Effective Storag			0.01	N/A	N/A				
t = Time _{75-25%} (mins)			12.0 6.94E-05	N/A N/A	N/A N/A				
Soil Infiltration Rate	: (11/5)		0.74E-VJ	IN/A	IN/A				
0.0		Tir	me (mins) 10.0			20.0			
0									
0.1 Depth to Water (m) 0.2					Tes	t 1			

C5 Double-ring Infiltrometer (permeability)

- A outer cylinder
- B inner cylinder
- C scale
- D water level

Specification

- C5.1 A sectional drawing of the apparatus is shown in the diagram above. Its component parts are specified below.
- C5.2 The outer cylinder has an inner diameter 500 ± 25 mm.
- C5.3 The inner cylinder has an inner diameter 300 ± 25 mm.
- C5.4 A graduated scale is used to measure water depth.
- C5.5 If sealing material is necessary, silicone rubber or closed-cell foam may be used.
- C5.6 Heavy weights may be used to improve the seal.

After setting up on the test surface, the time taken for the water to fall by 20 mm from an initial ponding depth of 30 (\pm 1) mm is measured. If a fall of 20mm has not been recorded after 30 minutes, the fall in water level is recorded at that time. The test is undertaken at five different locations on the surface.

The infiltration rate is calculated as follows:

 $IR = (F \times C) / t$

Where:

IR is the infiltration rate;

F is the fall of water level (mm);

C is any required temperature correction factor;

t is the measurement period in minutes.

Little Crow, Scunthe	orpe				
ob No:	Date of Test	:			TP2
1997	25	5/09/18			
Prepared By:	Date:				
JB	03	3/10/18			
Checked By:	Date:				
DRAFT		DRAFT			
		Time (min)	Depth to Water (m)	Drop in Water Level (mm)	
		0.0	0.140	-	
		0.33	0.170	30.0	
		0.5	0.200	60.0	
		0.75	0.220	80.0	
		1.0	0.240	100.0	
		1.16	0.250	110.0	
		1.33	0.260 (GL - DRY)	120.0	
		Change in Wate	vr Lovol (mm);	Measurement Period (mins):	
		Change in Wate		0.22	
		20	0	0.22	
	Infiltratio	n Rate (m	n/s)	1.50E-03	
Method:					
$ \mathbf{R} = (\mathbf{F} \times \mathbf{C}) / \mathbf{t}$				IR = Infiltration Rate	
(), -				F = Fall of water level (mm)	
				C = Any required temperature cor	rection factor
				t = Time taken in minutes to fall 20	

Intégrale Limited Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton BS39 5XP Tel: +44 (0) 1275 333 036 email: info@integrale.uk.com

Project: _ittle Crow, Scunth	orbo						TEST No:
ob No:	Date of Test:						TP5A
, 1997)9/18					11 54
Prepared By:	Date:		1				
JB		0/18					
Checked By:	Date:						
DRAFT	DR	AFT					
	Time (min)	Depth to Water (m)	Drop in Water Level (mm)	Time (min)	Depth to Water (m)	Drop in Water Level (mm)	
	0.0	0.140	-	11.0	0.181	41.0	
	0.5	0.145	5.0	12.0	0.184	44.0	
	1.0	0.148	8.0	13.0	0.187	47.0	
	1.5	0.150	10.0	14.0	0.190	50.0	
	2.0	0.152	12.0	15.0	0.192	52.0	
	2.5	0.155	15.0	16.0	0.194	54.0	
	3.0	0.157	17.0	17.0	0.197	57.0	
	4.0	0.160	20.0	18.0	0.200	60.0	
	5.0	0.163	23.0	19.0	0.202	62.0	
	6.0	0.166	26.0	20.0	0.205	65.0	
	7.0	0.169	29.0	25.0	0.218	78.0	
	8.0	0.172	32.0	30.0	0.230	90.0	
	9.0	0.176	36.0				
	10.0	0.179	39.0				
		Change in Wat	or Loval (mm);	Measurement F	Pariad (mins);	1	
		-	20	4.			
						1	
	Infiltration	Rate (n	n/s)	8	.33E-05		
Method: IR = (F x C) / t				IR = Infiltrat	ion Rate		
				F = Fall of w		ım)	
						rature correction	on factor
						es to fall 20mm	

Intégrale Limited Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton BS39 5XP Tel: +44 (0) 1275 333 036 email: info@integrale.uk.com

Project: Little Crow, Scunth	Orde						TEST No:
ob No:	Date of Test:						ΤΡΙΙ
1997		9/18					
Prepared By:	Date:]			I	
JB	11/1	0/18					
Checked By:	Date:	Date:					
DRAFT	DR	AFT					
	Time (min)	Depth to Water (m)	Drop in Water Level (mm)	Time (min)	Depth to Water (m)	Drop in Water Level (mm)	
	0.0	0.100	-	11.0	0.180	80.0	
	0.25	0.110	10.0	12.0	0.184	84.0	
	0.5	0.120	20.0	13.0	0.188	88.0	
	1.0	0.125	25.0	14.0	0.192	92.0	
	1.5	0.130	30.0	15.0	0.196	96.0	
	2.0	0.135	35.0	16.0	0.200	100.0	
	3.0	0.140	40.0	17.0	0.204	104.0	
	4.0	0.147	47.0	18.0	0.208	108.0	
	5.0	0.152	52.0	19.0	0.212	112.0	
	6.0	0.157	57.0	20.0	0.217	117.0	
	7.0	0.162	62.0	21.0	0.221	121.0	
	8.0	0.167	67.0	22.0	0.225	125.0	
	9.0	0.172	72.0				
	10.0	0.176	76.0				
		Change in Wat	er l evel (mm):	Measurement I	Period (mins):	1	
		-	20		.50		
			.0	0.	.50	J	
	Infiltration	Rate (n	n/s)				
Method: IR = (F x C) / t				IR = Infiltrat	ion Rate		
(vater level (m	ım)	
						rature correction	factor
						es to fall 20mm	

Project:					TEST No:
Little Crow, Scuntho	rpe				
Job No:	Date of Test:				
1997	25/	09/18			
Prepared By:	Date:				
JB	11/	10/18			
Checked By:	Date:				
DRAFT	DF	RAFT			
	•				
		Time (min)	Depth to Water (m)	Drop in Water Level (mm)	
		0.0	0.300	-	
		0.083	0.350 (GL - DRY)	50.0	
				+	
		Change in Wate		Measurement Period (mins):	
		20)	0.033	
	nfiltratior	n Rate (m) (s)	I.00E-02	
•		i nace (iii			
Method:					
$IR = (F \times C) / t$				IR = Infiltration Rate	
				F = Fall of water level (mm)	
				C = Any required temperature co	rrection factor
				t = Time taken in minutes to fall 2	0mm
Notes:					
Assumed no tempera					
If water level has not	dropped 20mm	i in 30mins, the	e water level is recorde	d at that time, and test finished.	

Crow, Scuntho	Date of Test:						TP16				
1997)9/18					IFIC				
	Date:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1								
d By:		0/18									
JB d By:	Date:	0/10									
DRAFT		AFT									
			1								
	Time (min)	Depth to Water (m)	Drop in Water Level (mm)	Time (min)	Depth to Water (m)	Drop in Water Level (mm)					
	0.0	0.260	-	12.0	0.325	65.0					
	0.50	0.270	10.0								
	1.0										
	1.5	0.275	15.0								
	2.0	0.280	20.0								
	3.0	0.285	25.0								
	4.0	0.290	30.0								
	5.0	0.295	35.0								
	6.0	0.300	40.0								
	7.0										
	8.0	0.310	50.0								
	9.0										
	10.0										
	11.0	0.320	60.0								
		Change in Wat	er Level (mm):	Measurement F	Period (mins):	1					
		•	20		50						
											
	Infiltration	Rate (n	n/s)	6	6.67E-04						
:											
^t x C) / t				IR = Infiltrat	ion Rate						
				F = Fall of w	ater level (m	ım)					
				C = Any rec	uired tempe	rature correction	n factor				
				t = Time tak	en in minute	s to fall 20mm					

Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP Tel: +44 (0) 1275 333 036 email: info@integrale.uk.com

	Job No: 1997 Job Name: Li						-		Cone Penetration (DCP) Te										
			Litt	tle Cro	w, Scu	intho	orpe					Hol	e:	TRL I					
	JB			Test	Date:	24/(09/2018			Тор	Dept	th (mn	n):			0			
	КВ			Date:		11/0	02/2019			Initial R	Ruler	Depth	ı		2	17			
Pen/Bl	ow Est (CBR	Blows	Depth	Pen/Bl	ow I	Est CBR					1							
(mm	n) (%	(%)	DIOWS	(mm)	(mm	n) ((%)				E	stimate	ed CBF	R (%)					
-	0.	.0							0	10		20		30	4	0	50		
63	4.	.3																	
61	4.	.5													_				
30	8.	.9																	
26	10).2						10	++-	++++					_	_			
30	8.	.9																	
35	7.	.6							\vdash			+					$\left + \right $		
37	7.	.2						20									Ħ		
35	7.	.6													_				
45		.0																	
69	3.																$\left \cdot \right $		
60								30											
47																	$\left \cdot \right $		
				1						X									
37		.2		1				40											
35	7.			1						1									
30				1				Ē		+ + + +					_				
24								Depth (mm)											
27	9.	.8		1				epth							_				
30	8.	.9																	
										++					_				
								60											
										4					_	_	$\left \right $		
								70									$\left \right $		
				1															
										- \					_		$\left \cdot \right $		
								80		<u>}</u>									
															_				
				1															
				1					\vdash	++	\square		++				$\left + \right $		
								90	' 🎞										
									\vdash		$\left \right $						$\left + \right $		
									Ħ										
								100											
										CDD 5		- 240*5	- (A A A A			-			
			Cooler	l vicel e C	looto-	hric	ol e Emil		-				n(^-0.97) as per 1	KL 587				
			Geolog								ering								
		- -	ogiotoro -								V3 10	v							
				Registered	Inté Registered Office: Th	Intégrale is Registered Office: The Granar	Intégrale is a tradi Registered Office: The Granary, Che	Intégrale is a trading name of Registered Office: The Granary, Chewton Fields	Geological Geological Geotechnical Environment Intégrale is a trading name of Integrale Li Registered Office: The Granary, Chewton Fields, Ston East	Intégrale is a trading name of Integrale Limited Registered Office: The Granary, Chewton Fields, Ston Easton, St	CBR Esti Geological • Geotechnical • Environmental • Enginee Intégrale is a trading name of Integrale Limited Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, B	Geological • Geotechnical • Environmental • Engineering Intégrale is a trading name of Integrale Limited	Geological • Geotechnical • Environmental • Engineering Intégrale is a trading name of Integrale Limited Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX	CBR Estimation = 240*Pen(^-0.97 Geological • Geotechnical • Environmental • Engineering Intégrale is a trading name of Integrale Limited Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX	CBR Estimation = 240°Pen(^-0.97) as per 1 Geological • Geotechnical • Environmental • Engineering Intégrale is a trading name of Integrale Limited Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX	CBR Estimation = 240*Pen(^-0.97) as per TRL 587 Geological • Geotechnical • Environmental • Engineering Intégrale is a trading name of Integrale Limited Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX	CBR Estimation = 240°Pen(^-0.97) as per TRL 587 Geological • Geotechnical • Environmental • Engineering Intégrale is a trading name of Integrale Limited Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX		

Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP Tel: +44 (0) 1275 333 036

		Und	erstandin	g Grou	nd Co	nditio	ns										1275	S39 5× 333 00 e.uk.co		
Job No) :		1997			TRL	Dynam	nic Con	e	Penetration (DCP) Test						st				
Job Na	ime:			Li	ttle Cro	ow, Scu	nthorpe					ł	Hole:		TRL DCP 2					
Prepar	ed By:		JB		Test Date: 24/09/2018					Top Depth (mm):					0					
Check	ed By:		КВ		Date:		11/02/2019			Initia	l Rul	er De	epth	221						
Blows	Depth	Pen/Bl	ow Est CBR	Blows	Depth	Pen/Blo	ow Est CBR											1		
DIOWS	(mm)	(mm) (%)	DIOWS	(mm)	(mm)) (%)					Estin	nated	CBR	(%)					
0	221	-	0.0	66	782	7	36.3	0			50	1	00	1	50	20	00	250		
I	289	68	4.0	67	790	8	31.9	0+												
2	341	52	5.2	68	797	7	36.3	_												
3	388	47	5.7	70	810	7	39.1													
4	438	50	5.4	72	825	8	34.0	100 -		++-										
5	454	16	16.3	74	840	8	34.0													
6	468	14	18.6	76	856	8	31.9													
7	477	9	28.5	78	877	11	24.5	200 -	+											
8	486	9	28.5	80	900	12	22.5													
10	494	4	62.5	82	930	15	17.4	1 I												
12	501	4	71.2					300 -												
17	508	I	173.2																	
23	517	2	162.0					· · · · · ·												
28	522	I	240.0						•											
33	529		173.2					400												
38	536	I	173.2																	
46	566	4	66.6					_ و	Ž											
47	571	5	50.4					Depth (mm)	+	-	-									
48	578	7	36.3					Dep							*			**		
	578	, 5	50.4									_		T						
49 5 J								600 -												
51	601	9	28.5																	
52	612		23.4						Ì											
53	623	11	23.4						ł											
54	637	14	18.6					700 -												
55	650	13	19.9									_								
56	665	15	17.4							ξ,										
57	681	16	16.3					800 -												
58	697	16	16.3						\square	1										
59	710	13	19.9																	
60	723	13	19.9					900 -		\square	\square			F		\square		\square		
61	733	10	25.7																	
62	744	П	23.4					ļ F	\square											
63	755	П	23.4					1000												
64	765	10	25.7																	
65	775	10	25.7							CBR	Estimati	on = 24	0*Pen(^-	0.97) a	is per T	RL 587				
				Geolo			nnical • Env			Ingir	eeri	ng								
							a trading name o													
							y, Chewton Field					4BX								
				Com	bany Regis	stration No	o. 2855366 Engla	and VAT Reg. N	No. 6	609 74	02 37									

Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP Tel: +44 (0) 1275 333 036 email: info@integrale.uk.com

3lows ((0 1 2 3 4 5 6 7	d By: I By:	JB KB Pen/Blow (mm) - 114 37 25 24 34 41 18 9	Est CBR (%) 0.0 2.4 7.2 10.6 11.0 7.8 6.5 14.5	Blows 36 37 38 39 40 41	Test Date: Depth (mm) 872 883 892 898 904	Date:			0	0	To Initial	Rul		Pept	m): :h ted	_	(%)	50°	27	DC 0 72		3
Checked Blows D ((0 1 2 3 4 5 6 7 5	I By: Depth (mm) 272 386 423 448 472 506 547 565 574 580	KB Pen/Blow (mm) - 114 37 25 24 34 41 18	Est CBR (%) 0.0 2.4 7.2 10.6 11.0 7.8 6.5	36 37 38 39 40 41	Depth (mm) 872 883 892 898 904	Pen/Blo (mm) 10 11 9	II/02/2019 ow Est CBR) (%) 25.7 23.4 28.5			0	Initial	Rul	er D Esti)ept	:h ted	CBR		50	27	72		
Blows D 0 ((0 1 2 3 4 5 6 7	Depth (mm) 272 386 423 448 472 506 547 565 574 580	Pen/Blow (mm) - 114 37 25 24 34 41 18	Est CBR (%) 0.0 2.4 7.2 10.6 11.0 7.8 6.5	36 37 38 39 40 41	Depth (mm) 872 883 892 898 904	Pen/Blo (mm) 10 11 9	Dow Est CBR) (%) 25.7 23.4 28.5			0		1	Est	imat	ted			50		1		
3lows ((0 1 2 3 4 5 6 7	(mm) 272 386 423 448 472 506 547 565 574 580	(mm) - 114 37 25 24 34 41 18	(%) 0.0 2.4 7.2 10.6 11.0 7.8 6.5	36 37 38 39 40 41	(mm) 872 883 892 898 904	(mm) 10 11 9) (%) 25.7 23.4 28.5			0	10	1						50		60		
((0 1 2 3 4 5 6 7	272 386 423 448 472 506 547 565 574 580	- 114 37 25 24 34 41 18	0.0 2.4 7.2 10.6 11.0 7.8 6.5	36 37 38 39 40 41	872 883 892 898 904	10 11 9	25.7 23.4 28.5			0	10	2						50		60		
I 2 3 4 5 6 7	386 423 448 472 506 547 565 574 580	37 25 24 34 41 18	2.4 7.2 10.6 11.0 7.8 6.5	37 38 39 40 41	883 892 898 904	 9	23.4 28.5			0	10	2	20	30	C	40	0	50		60		
2 3 4 5 6 7	423 448 472 506 547 565 574 580	37 25 24 34 41 18	7.2 10.6 11.0 7.8 6.5	38 39 40 41	892 898 904	9	28.5		0	<u> </u>										\rightarrow		70
3 4 5 6 7	448 472 506 547 565 574 580	25 24 34 41 18	10.6 11.0 7.8 6.5	39 40 41	898 904																	
4 5 6 7	472 506 547 565 574 580 580	24 34 41 18	11.0 7.8 6.5	40 41	904	6	42.2					-			_	\square		_	-	-	+	-
5 6 7	506 547 565 574 580	34 41 18	7.8 6.5	41	8										_				_	_		
6 7	547 565 574 580	41 18	6.5			6	42.2		100			-			_					-	+	-
7	565 574 580	18			910	6	42.2									\square	=		_	_		
	574 580		14.5	42	918	8	31.9															
8	580	9							200	\square					_	\square	-				-	
			28.5																			
	E00	6	42.2								_	-			_			_	_	_	-	_
10	200	8	31.9						300											_		
	594	6	42.2							$\left \right $		-			_				_	_	-	-
12	598	4	62.5							\top					_				_	_		
	604	6	42.2									-			_						+	-
14	612	8	31.9						400		\											
15	624	12	21.5																			_
16	638	14	18.6					Depth (mm)							_					_	_	_
17	661	23	11.5					bt	500		1											
18	685	24	11.0					Pa				-			_				_	_	-	_
19	700	15	17.4									•		-•	_		-		_	_		
20	710	10	25.7						600			-			•=		*	-	+	+	•	-
21	721	11	23.4										1						_	_		
22	735	14	18.6								Ý	1			_				-	-	+	-
23	749	14	18.6						700		•	-								_		
24	755	6	42.2									•	~	•					_	_		
25	760	5	50.4									•					-	_	_	_	•	_
26	764	4	62.5						800						*							
28	774	10	25.7								_	<			_		_	_	_	_	-	-
	782	8	31.9																_	\mp		
	790	8	31.9						0.00	\vdash		+	2	•					_	-	+	_
	800	10	25.7		1				900						•	7	*		\downarrow	\mp		
	817	17	15.4					-														_
	832	15	17.4														=		—	+		
	848	16	16.3		1				1000													
	862	14	18.6						:		CBR E	stimat	ion = î	240*P	en(^.	-0,97\	25 00	r TRI	587	-		_
				Geolog	ical • C	Geotecl	hnical • Env	ironn	nenta	1 • I					(·)	90					
				8			trading name o				0		•									
			F	Registered			y, Chewton Field				merset.	BA3	4BX									

Appendix G

Gas & Groundwater Monitoring

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Integrale Limited, Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP United Kingdom Tel: 01275 333 036 www.integrale.uk.com

Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX United Kingdom VAT Reg. No. 609 7402 37

Tel: 01275 333036 www.integrale.uk.com

STANDARD METHODOLOGIES FOR STANDPIPE INSTALLATIONS, SAMPLING and MONITORING FOR GAS AND GROUNDWATER

Standpipe Installations in Trial Pits

Simple 30-50mm diameter plastic standpipes are installed in trial pits during backfilling. These consist of slotted pipe throughout the buried length to within 0.5m of the ground surface, with unslotted pipe above. These are capped off with removable stop-ends above ground level. They provide a useful guide to soil gas conditions within the backfilled trial pit, however some soil gas will be lost by dispersal within the loose backfill at the surface of the pit. They are commonly used for monitoring standing groundwater levels which would develop within excavations, however careful consideration has to be given to the possible infiltration of rainfall and throughflow into the sump created by the excavated pit.

Standpipe Installations in Boreholes

Simple standpipes to measure the hydrostatic head of groundwater are formed in boreholes using 50mm diameter pipe. The details of individual installations are provided on borehole records. Typically the lower length is formed in slotted pipe, with the upper Im unslotted. The annulus between the riser pipe and the borehole wall is filled with clean granular material. Details of any bentonite seals or grouting are given on the borehole records. A removable gas tap is fitted where gas monitoring is required and standpipes typically have a metal access cover concreted in at ground level.

Standpipe piezometers are formed by using a Casagrande type piezometer tip at the base of the pipe, set in a granular response zone of sand or pea gravel. The response zone is isolated from the strata above and below by placing 500mm thick bentonite seals. The remaining annulus above the bentonite seal is filled with a cement bentonite grout or similar.

Groundwater Monitoring & Sampling

Details of return monitoring visits are included in this appendix. Groundwater standing levels are measured by inserting an electrically operated dip meter into the standpipe and recording the level to 2 decimal places, relative to existing ground level. Where groundwater levels are critical to calculation of hydraulic gradients or flow directions, the measurement is taken to 3 decimal places and to a marked point on the standpipe cover. That point is then surveyed and levelled to provide accurate calculations.

Groundwater samples are recovered using either Waterra valves and sample tubing or by manually lifting water from the standpipe using a bailer. For contamination analyses, the boreholes are initially purged by removing up to 3 borehole volumes of water, allowing the rest level to redevelop and taking a sufficient sample into custom containers. If groundwater does not recover sufficiently, the purged water may be used as the sample.

Gas Monitoring

Monitoring is usually completed in standpipes prior to groundwater measurements, using portable instruments. Details are given on the monitoring tables, and typically using a PhoCheck Tiger photoionisation detector to measure volatile organic compounds in ppm and a GA5000 Gas meter to measure oxygen, carbon dioxide and methane, both by % Lower Explosive Limit and % Volume. Atmospheric pressure and temperature are also recorded. Measurements are taken immediately on opening the gas valve and the highest to lowest levels recorded. If levels fluctuate, then this is recorded, with the maximum reading and a more typical or rest level given.

SiteLittle Crow, ScunthorpeClientINRG Solar LtdDateFriday, October 05, 2018

Weather	Mild and overcast,
vveather	strong breeze
Air Temperature	17.3°C

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Job No.	1997						
Monitored By	JB						
Visit No	I						

Atmospheric Pressure (mbar)	1010
Ground Conditions	Dry

Position ID	Time Elapsed (secs)	Gas Flow (l/hr)	%LEL	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	VOC (ppm)	Depth to Product (mbgl)	Depth to Water (mbgl)	Product Thickness (mm)	Well Depth (mbgl)		
TP5	0 30 60	0.2 0.3 0.3	2.0	0.1	11.8	9.2	0.3	-	1.73	-	1.90		
Comments:	comments: CO2 immediate increase to 11.8% before decrease to 1.4% within 45 secs, 0.6% after 70 secs. Well depth to cover level: 2.05m.												
TP5A	0 30 60	0.1 0.2 0.2	0.0	0.0	2.8	20.0	0.1	-	0.68	-	1.64		
<u>Comments</u> :	<u>Comments</u> : CO2 immediate increase to 2.8% followed by steady decrease to 0.6% after 1 min. Well depth to cover level: 1.79m.												
TP6	0 30 60	0.1 0.2 0.2	2.0	0.1	3.8	19.1	0.1	-	1.75 (wet strata)	-	1.76		
Comments:	CO2 decrea	se to 2.9% b	y 30 secs. W	ell depth to	cover level:	2.06m.							
TP7	0 30 60	0.1 0.2 0.2	2.0	0.1	3.2	19.0	0.1	-	DRY	-	1.81		
<u>Comments</u> :	CO2 decrea	sed to 1.0%	after Imin. V	Vell depth to	o cover level	2.06m.							
TP9	0 30 60	0.1 0.1 0.1	2.0	0.1	4.9	13.8	0.1	-	DRY	-	1.74		
Comments:	CO2 stable	throughout.	O2 declined	to 13.8% by	I min. Well	lepth to cov	er level: 2.00)m.					
TP10	0 30 60	0.1 0.1 0.1	0.0	0.0	2.5	18.8	0.0	-	DRY	-	1.84		
Comments:	Well depth	to cover leve	el: 2.06m.										

Little Crow, Scunthorpe

Wednesday, November 14, 2018

Cloudy with some

sunny spells 11.2°C

INRG Solar Ltd

Site

Client

Weather

Air Temperature

Date

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Job No.	1997
Monitored By	JB
Visit No	2

Atmospheric Pressure (mbar)	1014
Ground Conditions	Moist

Position ID	Time Elapsed (secs)	Gas Flow (l/hr)	%LEL	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	VOC (ppm)	Depth to Product (mbgl)	Depth to Water (mbgl)	Product Thickness (mm)	Well Depth (mbgl)
	0	-									
TP5	30	-	NR	NR	NR	NR	NR	NR	NR	NR	NR
	60	-									
<u>Comments</u> :	Monitoring	ocation lost.									
	0	0.1									
TP5A	30	0.2	2	0.1	6.1	19.4	0.1	-	0.65	-	1.62
	60	0.3									
Comments:	Monitored o	on 14/11/18.									
	0	0.1									
TP6	30	0.3	0	0.0	1.7	20.5	0.1	-	1.44	-	1.78
	60	0.3									
Comments:	Monitored o	on 16/11/18 -	Misty, cool,	light breeze;	1018 mbar.						
	<u>^</u>										
	0	-									
TP7	0 30	-	NR	NR	NR	NR	NR	NR	NR	NR	NR
TP7			NR	NR	NR	NR	NR	NR	NR	NR	NR
	30 60						NR	NR	NR	NR	NR
	30 60	-					NR	NR	NR	NR	NR
	30 60 End cap on ;	- - ground next					NR 0.1	NR -	NR DRY	NR -	NR 1.73
<u>Comments</u> :	30 60 End cap on ; 0	- ground next 0.2	to the stand	pipe, not mo	nitored this	visit.					
<u>Comments</u> : TP9	30 60 End cap on ; 0 30 60	- ground next 0.2 0.3	to the stand 2	pipe, not mo 0.1	nitored this s	visit. 19.6					
Comments: TP9 Comments:	30 60 End cap on ; 0 30 60 Monitored c	- ground next 0.2 0.3 0.2 on 15/11/18 - 0.1	to the stand 2 Cloudy witl	pipe, not mo 0.1 n some sunny	nitored this 2.5 7 spells, 1014	visit. 19.6 I mbar.	0.1		DRY		1.73
<u>Comments</u> : TP9	30 60 End cap on ; 0 30 60 Monitored o	- ground next 0.2 0.3 0.2 on 15/11/18 -	to the stand 2	pipe, not mo 0.1	nitored this s	visit. 19.6					

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Site	Little Cro	w, Scunthorp	be				Job No.		і 997 ЈВ				
Client	INRG Sola	ar Ltd					Monitored	Ву					
Date	Friday, No	ovember 16,	2018				Visit No			2			
					-								
Weather				misty, cool ht breeze			Atmospheri	c Pressure (r	mbar) 1022		22		
Air Tempera	ature			3°C			Ground Co	nditions		Mo	oist		
										Depth to Product			
Position ID	Time Elapsed (secs)	Gas Flow (l/hr)	%LEL	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	VOC (ppm)	Depth to Product (mbgl)	Depth to Water (mbgl)	Product Thickness (mm)	Well Depth (mbgl)		
	0	0.0											
WS1	30	0.1	0	0.0	0.7	21.1	0.0	-	2.49	-	2.98		
	60	0.1											
Comments:	Cover at Gr	ound Level.											
	0	0.1					1						
WS2	30	0.1	0	0.0	0.4	21.3	0.0	-	2.42	-	2.94		
W32	60	0.2	Ű	0.0	0.4	21.5	0.0		2.72		2.54		
Comments:	Cover at Gr												
	0	0.1											
WS3	30	0.1	0	0.0	1.0	20.5	0.0	-	DRY	-	1.99		
	60	0.2											
<u>Comments</u> :	Cover at Gr	ound Level.											
	0	0.1											
WS5	0	0.1	0	0.0	3.7	18.8	0.0		1.20	-	1.42		
VV 55	30 60	0.3	0	0.0	5.7	10.0	0.0	-	1.20	-	1.42		
Commonts:		to Cover Lev	vol: 151m										
<u>comments</u> .			vei. 1.51111.										
	0	0.0											
WS7	30	0.1	0	0.0	1.4	20.2	0.1	-	0.95	-	1.48		
	60	0.1											
Comments:	Well depth	to Cover Lev	vel: 1.59m.										
	0	0.0											
WS8	30	0.1	0	0.0	0.8	20.9	0.1	-	2.58	-	2.68		
	60	0.1											
Comments:	Cover at Gr	ound Level.											
	0	0.1											
WS9	30	0.2	0	0.0	0.3	2.1	0.0	-	2.53	-	2.66		
	60	0.2											
Comments:	Cover at Gr	ound Level.											
1													

Ground Gas and Groundwater Monitoring Record Sheet

JOB DETAILS:

Client:	Integrale	Quote No:					
Site:	Scunthorpe	Visit No:	1	of	1		
Date:	05/12/2018	Operator:	IS			Project Manager:	Dan Stodgell

					GAS C	ONCE	NTRAT	IONS					VOL	ATILES		I	LOW DATA		WELL AN	ND WATER DATA	Comments		
Monitoring Point	Methane (%v/v)				%l	.EL	Carbon (%	dioxide v/v)		rbon de (ppmv)	Hydr sulphid	ogen e (ppmv)	Oxyge	n (%v/v)	PID Peak (ppm)	Product thickness (mm)	Flow ra	ate (l/hr)	Differential borehole	Time for flow to equalise	Water level (mbgl)	Depth of well (m)	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady			Peak	Steady	Pressure (mb)	(secs)	(
WS1	ND	ND	ND	ND	0.7	0.7	ND	ND	ND	ND	20.1	20.3	ND	NR	0.0	0.0	-0.03	30	1.39	2.99			
WS2	ND	ND	ND	ND	0.5	0.5	ND	ND	ND	ND	20.4	20.4	ND	NR	0.0	0.0	-0.01	30	2.01	2.94			
WS3	ND	ND	ND	ND	1.5	1.5	ND	ND	ND	ND	18.0	18.0	ND	NR	0.0	0.0	-0.03	30	1.56	2.00			
WS5	ND	ND	ND	ND	3.8	3.8	ND	ND	ND	ND	17.3	17.3	ND	NR	0.0	0.0	-0.01	30	1.04	1.43			
WS7	ND	ND	ND	ND	2.7	2.7	ND	ND	ND	ND	18.9	18.9	2.4	NR	1.2	0.2	2.31	90	0.56	1.48			
WS8	ND	ND	ND	ND	4.5	4.5	7	1	ND	ND	2.1	2.1	2.1	NR	0.0	0.0	-0.08	30	2.54	2.70			
WS9	ND	ND	ND	ND	10.6	10.6	2	ND	ND	ND	1.0	1.0	2.8	NR	0.0	0.0	-0.05	30	2.45	2.68			
Max	ND	ND	ND	ND	10.6	10.6	7	1	ND	ND	20.4	20.4	NR	ND	1.2	0.2	2	90	2.54	2.99			
Min	ND	ND	ND	ND	0.5	0.5	ND	ND	ND	ND	1.0	1.0	NR	0.0	0.0	0.0	-0.1	30	0.56	1.43			

ND - Not detected

NR - Not recorded

NA - Non applicable

METEOROLOGICAL AND SITE INFORMATION:

METEOROLOGICAL AND SITE INFORM	MATION:		(Select correct box with X or enter data, as applicable)							
State of ground:	Dry		Moist	Х	Wet		Snow			
Wind:	Calm	Х	Light		Moderate		Strong			
Cloud cover:	None		Slight		Cloudy	Х	Overcast			
Precipitation:	None		Slight		Moderate	Х	Heavy			
Time monitoring performed:		08:15	Start		_	10:50	End			
Barometric pressure (mbar):		1011	Start		_	1015	End			
Pressure trend (Daily):			Falling	Х	Steady		Rising			
Source:	wunderground.com				_		_			
Air Temperature (Deg. C):		6	Before			8	After			

INSTRUMENTATION TECHNICAL SPECIFICATIONS:

Ground gas meter:	12519						
Gas Range:	CH₄	0 - 100%	CO2	0 - 100%	O ₂	0 - 25%	
Gas Flow range:	+100/-	50 l/hour					
Differential Pressure:	(+/-) 10	000 Pa					
Date of last calibration:		21/11/2018					
Date of next calibration:		22/05/2018					
			_				
Ambient air check:	CH₄	0.0	CO2	0.0	O ₂	20.6	

Frozen

Page 1 of 2

Ground Gas and Groundwater Monitoring Record Sheet

Ground Gas and Groundwater Monitoring Record Sheet

JOB DETAILS:	Gas/Dips/PID						
Client:	Integrale	Quote No:					
Site:	Scunthorpe	Visit No:	1	of	1		
Date:	07/12/2018	Operator:	P. Mur	ohy		Project Manager:	Phil Sanders

					GAS C	ONCE	NTRAT	IONS					VOL	ATILES		F	LOW DATA		WELL AN	ND WATER DATA	Comments
Monitoring Point	Methane	e (%v/v)	%	LEL	Carbon (%			rbon le (ppmv)	Hydro sulphide		Oxyger	n (%v/v)	PID Peak (ppm)	Product thickness (mm)	Flow ra	ate (I/hr)	Differential borehole	Time for flow to equalise	Water level (mbgl)	Depth of well (m)	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady			Peak	Steady	Pressure (Pa)	(secs)	(mbgi)		
TP5A	ND	ND	ND	ND	0.8	0.3	ND	ND	ND	ND	21.6	21.9	1.1	ND	0	0	0.09	60	0.29	1.64	
TP6	ND	ND	ND	ND	0.4	0.3	ND	ND	ND	ND	21.3	21.6	0	ND	0.1	0.1	0.07	60	1.00	1.74	
TP7	ND	ND	ND	ND	1.8	1.8	ND	ND	ND	ND	19.9	19.9	0	ND	0	0	0.09	60	1.77	1.78	Wet mud at base
TP9	ND	ND	ND	ND	1.9	1.4	ND	ND	ND	ND	19.0	19.2	0	ND	0	0	0.05	60	Dry	1.71	
TP10	ND	ND	ND	ND	2.1	2.1	ND	ND	ND	ND	19.9	19.9	0	ND	0	0	0.03	60	Dry	1.79	
WS1	ND	ND	ND	ND	0.6	0.6	ND	ND	ND	ND	21.4	21.4	0.6	ND	0	0	-0.02	60	1.26	3	
WS2	ND	ND	ND	ND	0.4	0.4	ND	ND	ND	ND	21.4	21.4	0.5	ND	0	0	-0.03	60	1.85	2.99	
WS3	ND	ND	ND	ND	0.8	0.8	ND	ND	ND	ND	19.5	19.5	0.3	ND	0.1	0.1	0.03	60	1.18	2	
WS5	ND	ND	ND	ND	3	3	ND	ND	ND	ND	18.4	18.4	0	ND	0	0	-0.05	60	0.88	1.43	
WS7	ND	ND	ND	ND	2.6	2.5	ND	ND	ND	ND	18.4	20.3	0.1	ND	0	0	0.02	60	0.31	1.46	
WS8	ND	ND	ND	ND	3.5	3.3	ND	ND	ND	ND	8.8	8.8	0.3	ND	0	0	-0.09	60	2.51	2.71	
WS9	ND	ND	ND	ND	7.7	7.7	ND	ND	ND	ND	8	8	0.3	ND	0	0	0.03	60	2.39	2.67	
Max	ND	ND	ND	ND	7.7	7.7	ND	ND	ND	ND	21.6	21.9	NR	ND	0.1	0.1	0	60	2.51	3.00	
Min	ND	ND	ND	ND	0.4	0.3	ND	ND	ND	ND	8.0	8.0	NR	ND	0.0	0.0	-0.1	60	DRY	1.43	

Frozen

ND - Not detected

NR - Not recorded

NA - Non applicable

METEOROLOGICAL AND	SITE INFORM	ATION:				(Select co	orrect bo>	with X c	r enter data, as a	pplicable)	
State of ground:		Dr	y			Moist		Х	Wet		Snow
Wind:			alm			Light		Х	Moderate		Strong
Cloud cover:		NC	one	_	X	Slight			Cloudy		Overcast
Precipitation:		No	one		Х	Slight			Moderate		Heavy
Time monitoring performed	:			1	11:00	Start				14:00	End
Barometric pressure (mbar)):				991	Start				993	End
Pressure trend (Daily):						Falling			Steady	Х	Rising
Source:		timeandd	ate.con	n			-				
Air Temperature (Deg. C):				L	10	Before				7	After
INSTRUMENTATION TEC	HNICAL SPEC	FICATIO	NS:								
Ground gas meter:	GA5000 - G50	5418									
Gas Range:	CH4 0 - 100	0% CC	D ₂ 0 ·	100%	6	O ₂	0 - 25%	6			

Gas Range: CH₄ 0 - 100% CO₂ 0 - 100% O₂ 0 - 2 Gas Flow range: +100/-50 l/hour 2

 Ambient air check:
 CH₄
 0.0
 CO₂
 0.1
 O₂
 20.9

Site	Little Crow, Scunthorpe
Client	INRG Solar Ltd
Date	Friday, March 08, 2019

Weather	Cool and overcast
Air Temperature	8.0°C

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Job No.	1997
Monitored By	JB
Visit No	4

Atmospheric Pressure (mbar)	999-1004
Ground Conditions	Damp

Position ID	Time Elapsed (secs)	Gas Flow (l/hr)	%LEL	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	VOC (ppm)	Depth to Product (mbgl)	Depth to Water (mbgl)	Product Thickness (mm)	Well Depth (mbgl)
TP5	0 30 60	-	NR	NR	NR	NR	NR	NR	NR	NR	NR
<u>Comments</u> :	Comments: Monitoring position lost.										
TP5A	0 30 60	0.0 0.0 0.0	0.0	0.0	0.4	20.5	-	-	0.25	-	1.62
<u>Comments</u> :											
TP6	0 30 60	0.1 0.1 0.1	0.0	0.0	0.1	20.7	-	-	0.87	-	1.75
<u>Comments</u> :											
TP7	0 30 60	0.1 0.1 0.1	0.0	0.0	1.6	19.1	-	-	DRY	-	1.72
<u>Comments</u> :											
TP9	0 30 60	0.1 0.1 0.1	0.0	0.0	2.5	17.8	-	-	DRY	-	1.74
Comments:											
TP10	0 30 60		NR	NR	NR	NR	NR	NR	0.72	NR	1.81
Comments:	Monitoring	position dam	aged.								

Understanding Ground Conditions

Site	Little Crow, Scunthorpe
Client	INRG Solar Ltd
Date	Friday, March 08, 2019

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Site	Little Cro	w, Scunthorp	e				Job No.		1997			
Client	INRG Sola	ar Ltd					Monitored I	Ву	JB			
Date	Friday, Ma	rch 08, 2019					Visit No		4			
Weather				overcast				c Pressure (1				
Air Tempera	ature		8.0	°C			Ground Co	nditions		Da	mp	
Position ID	Time Elapsed (secs)	Gas Flow (l/hr)	%LEL	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	VOC (ppm)	Depth to Product (mbgl)	Depth to Water (mbgl)	Product Thickness (mm)	Well Depth (mbgl)	
	0	0.1			(/0/101)	(/0,/01)	(PP)	(110,61)	(11081)	()		
WS1	30	0.2	0	0.0	0.6	20.3	_	_	1.37	-	2.99	
	60	0.2	Ū	0.0	0.0	2010			2.07		2100	
Comments:	Cover at Gr											
	0	0										
WS2	30	0.1	0	0.0	0.4	20.3	-	-	1.73	-	2.94	
	60	0.1										
Comments:	Cover at Gr	ound Level.										
	0	0.1										
WS3	30	0.1	0	0.0	2.0	18.6		_	1.83	_	1.99	
VV35	60	0.2	0	0.0	2.0	10.0	_		1.05	_	1.55	
Commonts	Cover at Gr											
<u>comments</u> .		ound Level.										
	0	0.1										
WS5	30	0.1	0	0.0	4.0	18.8	-	-	0.95	-	1.44	
	60	0.1										
Comments:	Well depth	to Cover Lev	rel: 1.51m.									
	-					1						
	0	0.1	-			22.5						
WS7	30	0.1	0	0.0	1.2	20.6	-	-	0.2	-	1.5	
	60	0.1										
Comments:	vvell depth	to Cover Lev	el: 1.59m.									
	0	0.1										
WS8	30	0.2	0	0.0	1.7	19.4	-	-	2	-	2.7	
	60	0.2										
Comments:	Cover at Gr	ound Level.										
	0	0.1										
WS9	30	0.2	2	0.1	15.1	0.4	-	-	1.89	-	2.66	
	60	0.2										
Comments:	Cover at Gr											

Appendix H

Results of Geotechnical Laboratory Testing

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Integrale Limited, Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP United Kingdom Tel: 01275 333 036 www.integrale.uk.com

Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX United Kingdom VAT Reg. No. 609 7402 37

Tel: 01275 333036 www.integrale.uk.com

STANDARD METHODOLOGY FOR GEOTECHNICAL SAMPLING

Soil samples are recovered from trial pits or borehole samples using a stainless steel trowel and immediately placed into airtight plastic tubs or bags, as appropriate for the testing. If required the soil samples may be wrapped in cling film, particularly in suspected desiccated soils. Samples are labelled with the site name, investigation location and depth and placed into either cool boxes or large bulk bags for transit from site. An analytical schedule is drawn up in line with the actual ground conditions proven, proposed site use and likely design parameters.

Samples are sent to a specialist testing laboratory. Testing is completed in line with BS1377 as far as possible and details of the test method and UKAS accreditation are provided by the laboratory on the results sheets in a separate appendix.

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Transmittal Note

South West Geotechnical Ltd Unit 3 Brooklands, Howden Road, Tiverton, Devon EX16 5HW

SOUTH WEST GEOTECHNICAL

			EALO SHIV
Job No:	10687	Date Received:	02/10/18
Job Name:	Little Crow, Scunthorpe	Date Sent:	17/10/18
Client Name:	Integrale	Transmittal Number:	T3906
Client Job No:	1997	Senders Initials:	NWW
Client Address	Suite 7, Westway Farm Business Park,	Wick Road, Bishop Sutton, Brist	ol, BS39 5XP

Ref.	Test Detail	No. of Tests / Report No.
A1	BS1377: Part 2: 1990: Clause 3 - Moisture Content - UKAS Accredited	3
A5	BS1377: Part 2: 1990: Clause 4 & 5 - Atterberg Limits - UKAS Accredited	3
A9	BS1377: Part 2: 1990: Clause 9.2 / 9.3 - Particle Size Distribution - UKAS Accredited	8
A10	BS1377: Part 2: 1990: Clause 9.4 - Sedimentation by Pipette - UKAS Accredited	8
Nick Worthi	Signatories: ngton-Williams (Laboratory Technical Manager), Dan Ayre (Deputy Quality Manager) oridge (Senior Technician)	
This c	ertificate shall not be reproduced except in full, without prior written approval of the laboratory.	8260 Accredited to ISO/IEC 17025:2005

Summary of Classification Test Results

Unit 3 Brooklands, Howden Road, Tiverton, Devon EX16 5HW

Proj	ect No.				Project Name								
10)687				Little Crow, Scunthorpe								
Client	Job No).			Client								8260 Accredited
1	997				Integrale								
lole No.	o. Type Top Base Ref		Ref	Soil Description	<i>mc</i> Cl.3.2	Passing 425µm	LL	PL CI5.3	PI CI5.4	Particle density	Rema	ırks	
						%	%	%	%	%	Mg/m3		
TP01	D	1.80		-	Yellowish brown mottled reddish brown and grey CLAY	36	100 - Natural	92	30	62	-		
TP04	D	2.30		-	Greenish grey silty CLAY	32	100 - Natural	61	24	37	-		
TP08 D 0.80 - Yellowish brow		-	Yellowish brown and greenish grey slightly gravelly slightly sandy silty CLAY	15	95 - Sieved	54	22	32	-				
						-	-	-	-	-	-		
						-	-	-	-	-	-		
						-	-	-	-	-	-		
						-	-	-	-	-	-		
						-	-	-	-	-	-		
						-	-	-	-	-	-		
						-	-	-	-	-	-		
	Prep	aration	Clauses	: Particl	e Density (BS1377:Part 1: 1990: CL7.4.4) Atterberg Limits (BS1377:Part 1: 1990	: CL7.4.3) Moisture Co	ontent	(BS13	77: Part	1: 1990: C	L7.3.3 & 7.4.2)	
4pt cor	ne (CL.4	l.3) unle	877-2:19 ess : (CL.4.4)	sp	article density BS1377-2:1990 - small pyknometer CL.8.3 j - gas jar CL.8.2		Date		,	Approve	ed By	Page No.	1
4.2.3 - 1 4.2.4 - 3	Natural Sieved			9			17/10/2018			id Trow Senior	/bridge - Tech	KL001R Inde	x Summ

Graphical Summary of Atterberg Test Results

Unit 3 Brooklands, Howden Road, Tiverton, Devon EX16 5HW

	Project Name					
10687	Little Crow, Scunth	orpe				
Client Job No.	Client					
1997	Integrale					
90	Casa	agrande Chart		Sample ID	Plasticity Index (%)	Modifie Plasticit Index (%)
80				TP01 (D) @ 1.80m	62	62
60			CE	TP04 (D) @ 2.30m	37	37
		CV		TP08 (D) @ 0.80m	32	30
50 50 540 30	СН		ME	-	-	-
30		MV		-	-	-
20	CL MI			-	-	-
10	MI			-	-	-
0	ML			-	-	-
			TP08 (D) @ 0.80m	-	-	-
	The Modified Plastici	ty Index (I'p) is defi I by the percentage	ned as the Plasticity Ind of particles less than 42		- soil	-
	The Modified Plastici multiplied	ty Index (I'p) is defi by the percentage ie. I'p x % less th	ned as the Plasticity Ind of particles less than 42 nan 425um/100%		- soil	-
	The Modified Plastici multiplied <u>Modified</u>	ty Index (I'p) is defi by the percentage ie. I'p x % less th Plasticity/Volume (ned as the Plasticity Ind of particles less than 42 han 425um/100% Change Potential Chart		- soil	-
	The Modified Plastici multiplied <u>Modified</u>	ty Index (I'p) is defi by the percentage ie. I'p x % less th Plasticity/Volume (ned as the Plasticity Ind of particles less than 42 nan 425um/100%			-) @ 1.80m
	The Modified Plastici multiplied <u>Modified</u>	ty Index (I'p) is defi by the percentage ie. I'p x % less th Plasticity/Volume (ned as the Plasticity Ind of particles less than 42 han 425um/100% Change Potential Chart			-) @ 1.80m
90	The Modified Plastici multiplied <u>Modified</u>	ty Index (I'p) is defi by the percentage ie. I'p x % less th Plasticity/Volume (ned as the Plasticity Ind of particles less than 42 han 425um/100% Change Potential Chart			-) @ 1.80m
90 80 70	The Modified Plastici multiplied <u>Modified</u>	ty Index (I'p) is defi by the percentage ie. I'p x % less th Plasticity/Volume (ned as the Plasticity Ind of particles less than 42 han 425um/100% Change Potential Chart			-) @ 1.80m
90 80 70 60	The Modified Plastici multiplied <u>Modified</u>	ty Index (I'p) is defi by the percentage ie. I'p x % less th Plasticity/Volume (ned as the Plasticity Inde of particles less than 42 han 425um/100% Change Potential Chart Idards 2011 Part 4.2 D5	5μm.	■ TP01 (D	-) @ 1.80m) @ 2.30m
90 80 70 60	The Modified Plastici multiplied <u>Modified</u>	ty Index (I'p) is defi by the percentage ie. I'p x % less th Plasticity/Volume (ned as the Plasticity Inde of particles less than 42 man 425um/100% Change Potential Chart idards 2011 Part 4.2 D5	5μm.	■ TP01 (D	
90 80 70 60	The Modified Plastici multiplied <u>Modified</u>	ty Index (I'p) is defi by the percentage ie. I'p x % less th Plasticity/Volume (ned as the Plasticity Inde of particles less than 42 han 425um/100% Change Potential Chart dards 2011 Part 4.2 D5	5μm.	■ TP01 (D	
90 80 70 60	The Modified Plastici multiplied <u>Modified</u>	ty Index (I'p) is defi I by the percentage ie. I'p x % less the Plasticity/Volume (ted from NHBC Star	ned as the Plasticity Inde of particles less than 42 man 425um/100% Change Potential Chart idards 2011 Part 4.2 D5	5μm.	■ TP01 (D) @ 2.30m
90 80 70 60	The Modified Plastici multiplied <u>Modified</u>	ty Index (I'p) is defi I by the percentage ie. I'p x % less the Plasticity/Volume (ted from NHBC Star	ned as the Plasticity Inde of particles less than 42 han 425um/100% Change Potential Chart dards 2011 Part 4.2 D5 HIGH VOLUME CHANGE PO MEDIUM VOLUME CHANGE	5μm.	■ TP01 (D	
Plasticity Index (%) 80 00 00 00 00 00 00 00 00 00	The Modified Plastici multiplied <u>Modified</u>	ty Index (I'p) is defi I by the percentage ie. I'p x % less the Plasticity/Volume (ted from NHBC Star	ned as the Plasticity Inde of particles less than 42 han 425um/100% Change Potential Chart dards 2011 Part 4.2 D5	5μm.	■ TP01 (D) @ 2.30m
90 80 70 60	The Modified Plastici multiplied <u>Modified</u> As calculat	ty Index (I'p) is defi I by the percentage ie. I'p x % less the Plasticity/Volume (ted from NHBC Star	ned as the Plasticity Inde of particles less than 42 han 425um/100% Change Potential Chart idards 2011 Part 4.2 D5 HIGH VOLUME CHANGE PO MEDIUM VOLUME CHANGE PO NEGLIGIBLE VOLUME CHANGE PO NEGLIGIBLE VOLUME CHANGE PO	5μm.	■ TP01 (D) @ 2.30m
90 80 70 60 50 40 40 20 10 0	The Modified Plastici multiplied <u>Modified</u> As calculat	ty Index (I'p) is defi I by the percentage ie. I'p x % less th Plasticity/Volume C ted from NHBC Star	ned as the Plasticity Inde of particles less than 42 han 425um/100% Change Potential Chart idards 2011 Part 4.2 D5 HIGH VOLUME CHANGE PO MEDIUM VOLUME CHANGE PO NEGLIGIBLE VOLUME CHANGE PO NEGLIGIBLE VOLUME CHANGE PO	5μm.	■ TP01 (D) @ 2.30m

	Pai	rticle Size Di	stributio	on	Project No.		10687		
SOUTH WEST GEOTECHNICAL	BS1377:F	Part 2:1990, cla	auses 9.2	and 9.4	Borehole/Pit No.		TP02		
Project Name	Little Crow, Scu	inthorpe			Sample No.		-		
Soil Description	Dark brown silty S	SAND			Depth, m	0.20	-		
Client Job No.	1997	Specimen Depth	0.20) m	Sample Type		ES		
Client	Integrale								
CLAY	SILT ne Medium		SAND ⁄ledium Coa	rse Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS		
100 90 80 70 80 50 40 30 20 10 0.001	0.01	0.1	1 Particle Siz	ze mm					
	eving	Sedimentati	on	Dry M	ass of sample, g		209		
Particle Size mm	% Passing	mm	Passing						
125 75	-	0.0201	3	Sample Pr Very coars		%	dry mass 0		
63	-	0.0020	0	Gravel	,e		0		
50	-	Particle density (ass		Sand			89		
37.5	-	2.65 Mg/r		Silt			11		
20	-			Clay			0		
14	-								
10	-				Grading A				
5	-			D100	mm		2		
2	100			D60	mm		0.224		
1.18 0.6	100 99			D30 D10	mm		0.152		
0.8	99				mm Coefficient		4.1		
0.425	83				Coefficient		1.9		
0.15	29						-		
	11 on pre-teatment N/A	Remarks Preparation a		ccordance with E 7.3 & 7.4.5	3S1377: Part 1: 1990				
Page No.	1	Date		Approved			8260 Accredited to		
Sheet ID:	Sheet ID: KL002R PSD		5:44	David Trowbridg	ge - Senior Tech		SO/IEC 025:2005		

	Pa	rticle Size	Distrik	oution		Project No.		10687
SOUTH WEST GEOTECHNICAL	BS1377:I	Part 2:1990,	clauses	s 9.2 ar	nd 9.4	Borehole/Pit No.		TP04
Project Name	Little Crow, Scu	Inthorpe				Sample No.		-
Soil Description	Dark brown slight	ly clayey silty SAND)			Depth, m	0.30	-
Client Job No.	1997	Specimen Depth		0.30	m	Sample Type		ES
Client	Integrale							
CLAY	SILT ne Medium	Coarse Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
100								
100 90 80 70 60 50 40 30 20 10 0.001	0.01	0.1	Par	1 ticle Size	mm	10		
	eving	Sedimen	tation		Dry Ma	ass of sample, g		279
Particle Size mm	% Passing	Particle Size mm	% Passir	ng				
125 75	-	0.0201 0.0060	9 5		Sample Pro		%	dry mass 0
63	-	0.0020	2		Gravel			0
50	-	Particle density (a			Sand Silt			85 12
37.5 20	-	2.65 N	lg/m3		Slit Clay			2
14	-							
10 5	100				D100	Grading Ar	nalysis	10
2	100				D100	mm mm		0.211
1.18	100				D30	mm		0.12
0.6	99 96				D10 Uniformity	mm		0.0241 8.7
0.425	86				Curvature (2.8
0.15	35							
	15 on pre-teatment N/A	Remarks Preparatio	Remarks Preparation and testing in accordance with B CL7.3 & 7.4.5				hantan	
Page No.	2	Date	e		Approved A			8260 credited to
Sheet ID:	KL002R PSD	17/10/2018	8 15:44	Dav	id Trowbridg	le - Senior Tech		ISO/IEC 7025:2005

-	Pa	rticle Size D	istrib	oution		Project No.	10687
SOUTH WEST GEOTECHNICAL	BS1377:	Part 2:1990, c	lauses	s 9.2 and	d 9.4	Borehole/Pit No.	TP09
Project Name	Little Crow, Sc	unthorpe				Sample No.	-
Soil Description	Yellowish brown	slightly clayey slightly	silty slight	tly gravelly S	AND	Depth, m	0.80 -
Client Job No.	1997	Specimen Depth		0.80	m	Sample Type	D
Client	Integrale						
CLAY	SILT Fine Medium	Coarse Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES BOULDERS
100						0	
90							
0,001	0.01	0.1 Sedimenta		1 iicle Size m	nm	10 ass of sample, g	263
Particle Size mm	% Passing	Particle Size mm	% Passin				203
125 75	-	0.0201 0.0060	3		Sample Pro /ery coars		% dry mass 0
63	-	0.0020	2		Gravel	e	3
50	-	Particle density (as			Sand		91
37.5	-		j/m3		Silt		3
20	-			C	Clay		2
14	100			_			
10	99	4				Grading A	
5	98	4			0100	mm	14
2	97	-			060	mm	0.222
1.18	96 95	-			030 010	mm	0.154 0.0747
0.6	95	-				mm Coefficient	3
0.425	85	-				Coefficient	1.4
0.15	28	-					
0.063 Sedimenta	6 tion pre-teatment N/A	Remarks Preparation	Remarks Preparation and testing in accordance with B CL7.3 & 7.4.5				
Page No.	3	Date	Date Appr				8260 Accredited to ISO/IEC
Sheet ID	Sheet ID: KL002R PSD		15:44	David	l Trowbridg	je - Senior Tech	17025:2005

	Pa	rticle Size	Distri	oution		Project No.		10687
SOUTH WEST GEOTECHNICAL	BS1377:I	Part 2:1990,	clauses	s 9.2 aı	nd 9.4	Borehole/Pit No.		TP10
Project Name	Little Crow, Scu	Inthorpe				Sample No.		-
Soil Description	Yellowish brown of	clayey silty SAND				Depth, m	0.50	-
Client Job No.	1997	Specimer Depth	n	0.50	m	Sample Type		D
Client	Integrale							
CLAY	SILT ne Medium	Coarse Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
100								
100 90 80 70 80 50 40 30 20 10 0.001	0.01	0.1	Par	1 ticle Size	mm	10		
Sie Particle Size	eving	Sedime Particle Size	ntation		Dry Ma	ass of sample, g		249
mm	% Passing	mm	% Passir	ng	Ol- D			
125 75	-	0.0201 0.0060	19 14		Sample Pro		70	dry mass 0
63	-	0.0020	10		Gravel			0
50	-	Particle density			Sand			78
37.5	-	2.65	Mg/m3		Silt			12
20 14	-				Clay			10
14	-					Grading A	nal <u>ysis</u>	
5	100				D100	mm		5
2	100				D60	mm		0.212
1.18	99				D30	mm		0.102
0.6	97				D10	mm		0.00222
0.425	94					Coefficient		96
0.3	83				Curvature	Coefficient		22
0.15	37	Demosta					-	
	22 on pre-teatment N/A		Remarks Preparation and testing in accordance with B CL7.3 & 7.4.5					
Page No.	4	Da	te		Appr	oved	8260 Accredited to	
Sheet ID: I	KL002R PSD	17/10/201	18 15:44	Dav	vid Trowbridg	je - Senior Tech		ISO/IEC 7025:2005

-	Pa	rticle Size D	Distrik	oution		Project No.		10687
SOUTH WEST GEOTECHNICAL	BS1377:	Part 2:1990, c	lauses	s 9.2 a	nd 9.4	Borehole/Pit No.		TP11
Project Name	Little Crow, Sci	unthorpe				Sample No.		-
Soil Description	Dark brown sligh	tly clayey silty SAND				Depth, m	0.20	-
Client Job No.	1997	Specimen Depth		0.20	m	Sample Type		ES
Client	Integrale							
CLAY	SILT	Coarse Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
100 90 80 70 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	0.01	0.1	Par	1 ticle Size	mm	10		1000
S Particle Size	ieving	Sedimenta Particle Size	ation		Dry Ma	ass of sample, g		225
mm	% Passing	0.0201	% Passir	ng	Sample Pro			dry mass
125 75	-	0.0060	12 9		Very coars		70	0
63	-	0.0020	5		Gravel			1
50	-	Particle density (as			Sand			82
37.5 20	-	2.65 Mg	g/m3		Silt Clay			13 5
14		4			olay			5
10	99	1				Grading A	nalysis	
5	99]			D100	mm		
2	99	4			D60	mm		0.209
1.18 0.6	99 98	4			D30 D10	mm		0.112
0.6	98	1			Uniformity	mm Coefficient		21
0.3	86	1			Curvature			6.1
0.15	36							
	17 ion pre-teatment N/A	Remarks Preparation	Remarks Preparation and testing in accordance with B CL7.3 & 7.4.5				hundrud	
Page No.	Page No. 5				Appr	8260 Accredited to		
Sheet ID:	KL002R PSD	17/10/2018	15:44	Da	vid Trowbridg	je - Senior Tech		ISO/IEC 7025:2005

	Pa	rticle Size D	istribu	ution		Project No.		10687
SOUTH WEST GEOTECHNICAL	BS1377:	Part 2:1990, c	lauses	9.2 and 9	9.4	Borehole/Pit No.		TP16
Project Name	Little Crow, Scu	unthorpe				Sample No.		-
Soil Description	Dark brown sligh	tly clayey slightly silty	SAND			Depth, m	0.20	-
Client Job No.	1997	Specimen Depth		0.20	m	Sample Type		ES
Client	Integrale							
CLAY	SILT ine Medium	Coarse Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
			Wediam	Course	T IIIO			
100 90 80 70 80 70 60 50 40 40 20 10 0 0.001	0.01	0.1	Partic	1 le Size mm		10		1000
	eving	Sedimenta	tion		Dry Ma	ass of sample, g		477
Particle Size	% Passing	mm	% Passing					
125 75	-	0.0201 0.0060	23 13		npie Pro y coars	oportions e	%	dry mass 0
63	-	0.0020	6	Gra	ivel			24
50	-	Particle density (as		San				42
37.5 20	100 97	2.65 Mg	/m3	Silt				28 6
14	95	1		010				~
10	90]				Grading Ar	alysis	
5	82	Į		D10		mm		37.5
2	76 73	4		D60 D30		mm		0.235 0.0416
0.6	73	1		D30		mm mm		0.0416
0.425	69	1				Coefficient		65
0.3	66	1				Coefficient	1	2
0.15	50							
	34 on pre-teatment N/A	Remarks Preparation	and testing	in accordanc CL7.3 & 7.4		S1377: Part 1: 1990	hudhud t	
Page No.	6	Date			Appr	oved		8260 credited to
Sheet ID:	KL002R PSD	17/10/2018	15:44	David Tr	rowbridg	e - Senior Tech		SO/IEC 025:2005

	Pa	rticle Size D	istrib	oution		Proje	ct No.		10687	
SOUTH WEST GEOTECHNICAL	BS1377:I	Part 2:1990, cl	lauses	s 9.2 ai	nd 9.4	Boreho	le/Pit No.		TP19	
Project Name	Little Crow, Scu	inthorpe				Samp	ole No.		-	
Soil Description	Yellowish brown	slightly clayey silty SA	ND			Dep	th, m	0.20	-	
Client Job No.	1997	Specimen Depth		0.20	m	Samp	le Туре		ES	
Client	Integrale									
CLAY	SILT ne Medium	Coarse Fine	SAND Medium	Coarse	Fine	GRAVEL Medium	Coarse	COBBLES	BOULDERS	
	ne Medium		Medium	Coarse		Mediam	Coarse			
100 90 80 70 60 50 40 30 20 10 0 0.001	0.01	0.1	Part	1 icle Size	mm	10				00
	eving	Sedimenta	tion		Dry Ma	ass of sar	nple, g		242	
Particle Size mm	% Passing	mm	% Passin	g						
125 75	-	0.0201 0.0060	7 5		Sample Pro			%	dry mass 0	
63	-	0.0020	4		Gravel	<u> </u>			1	
50	-	Particle density (as	sumed)		Sand				89	
37.5	-	2.65 Mg	/m3		Silt				6	
20	100				Clay				4	
14	-						0			
10 5	100 100				D100		Grading Ar	alysis		
2	99				D100 D60		mm		0.22	
1.18	99				D30		mm mm		0.22	
0.6	99				D30 D10		mm		0.0632	
0.425	96				Uniformity	Coefficien			3.5	
0.3	85				Curvature				1.7	
0.15	29							-		
			Remarks Preparation and testing in accordance with B CL7.3 & 7.4.5				rt 1: 1990	hinik		
	N/A									
Page No.	7	Date		Appro				8260 Accredited to ISO/IEC		
Sheet ID: I	Sheet ID: KL002R PSD		15:44	Dav	vid Trowbridg	je - Senior ⁻	Tech		7025:2005	

	Pa	rticle Size [Distrib	ution		Project No.		10687
SOUTH WEST GEOTECHNICAL	BS1377:	Part 2:1990, c	lauses	9.2 and	9.4	Borehole/Pit No.		TP20
Project Name	Little Crow, Scu	unthorpe				Sample No.		-
Soil Description	Yellowish brown	clayey very silty very	sandy GRA	VEL		Depth, m	0.40	-
Client Job No.	1997	Specimen Depth		0.40	m	Sample Type		D
Client	Integrale							
CLAY	SILT ne Medium	Coarse Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
100				·				
90 90 80 70 60 50 40 30 20 10 0 0.001	0.01	0.1	Partic	1 cle Size m		10	100	
Side Particle Size	eving % Passing	Sediment Particle Size			Dry Ma	ass of sample, g		492
mm 125	% Passing	mm 0.0201	% Passing		ample Pro	oportions	%	dry mass
75	-	0.0060	14	V	ery coars			0
63 50	-	0.0020 Particle density (a	7		and			42 29
37.5	100 85		ssumea) g/m3		and ilt			29
20	77				lay			7
14	68							
10	66				100	Grading Ar	alysis	50
5	61 58				0100 060	mm mm		50 3.43
1.18	57	1			30	mm	(0.0707
0.6	55				10	mm		.00301
0.425	53	1				Coefficient		1100
0.3	50			С	urvature (Coefficient		0.48
0.15	37						1	
	29 on pre-teatment N/A		Remarks Preparation and testing in accordance with B CL7.3 & 7.4.5				lunhud L	
Page No.	8	Date			Appro	oved		8260 redited to
Sheet ID:	KL002R PSD	17/10/2018	15:44	David	Trowbridg	le - Senior Tech		SO/IEC 025:2005

Appendix I

Results of Contamination Analyses

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Integrale Limited, Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP United Kingdom Tel: 01275 333 036 www.integrale.uk.com

Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX United Kingdom VAT Reg. No. 609 7402 37

Tel: 01275 333036 www.integrale.uk.com

STANDARD METHODOLOGY FOR CONTAMINATION SAMPLING & SCHEDULING

Soil samples for contamination analyses are recovered from trial pits or borehole samples using a stainless steel trowel and immediately placed into airtight amber glass jars, vials, or plastic tubs, as appropriate for the testing. These samples are labelled with the site name, investigation location and depth and placed into cool boxes for transit from site. Groundwater samples recovered during subsequent monitoring visits are similarly treated.

An analytical schedule is drawn up in line with the desk study findings, guidance given in CLR 8 and any relevant industry information, the actual ground conditions proven and proposed site use.

Samples are sent via overnight courier to the specialist testing laboratory. Testing is scheduled for MCERTS accredited analyses as far as possible and details of the test method are provided by the laboratory on the results sheets in a separate appendix. A standard turnaround of 10 working days is adopted unless otherwise agreed with the client at the time of instruction.

Tel: 01275 333036 www.integrale.uk.com

BRIEFING NOTE - SOIL CONTAMINANT GUIDELINE VALUES

Integrale Limited has produced a suite of generic Soil Guideline Values to enable quantitative assessment of risks to human health for various Conceptual Models. The CLEA v1.06 model was used to generate a robust database of guideline values for preliminary quantitative risk assessments. Integrale believe that CLEA v1.06 can be used with caution to derive Generic and Site Specific Assessment Criteria. All CLEA v1.06 assessments have been based on the series of reports published by DEFRA and the Environment Agency (EA), including Science report(s): SC050021/SR2, /SR3, /SR4 and /SR7.

Generic Assessment Criteria (GAC) have been generated for:

- Metals and semi-metals: arsenic, beryllium, cadmium, chromium, copper, mercury, nickel, selenium, vanadium and zinc. The previously published CLEA 2002 SGV for lead has been retained.
- Aliphatic TPH (C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44). Aromatic TPH's (C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35 and C35-C44).
- Priority PAHs: Naphthalene, Benzo(a)pyrene, Fluorene, Dibenzo(a,h)anthracene.
- Dioxins, furans and dioxin-like PCBs
- Benzene, toluene, ethylbenzene, xylenes.
- Cyanide, phenol.
- Chlorinated solvents: 1,2 dichloroethane, tetrachloroethanes, tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, vinyl chloride.

Default library values provided within CLEA v1.06 have been used where available. The contaminant library physio-chemical data has been updated where necessary. All new physio-chemical and toxicological data has been obtained from Soil Guideline Value (SGV) & TOX reports, EA and DEFRA published Science Reports and LQM CIEH where possible; otherwise, data has been sourced from other accredited sources.

Generic AC have been calculated for generic land uses, based on CLEA default building types, receptor types and characteristics, age classes, exposure pathways and averaging periods, and site characteristics.

Integrale have calculated generic AC's for typical housing with homegrown produce and without homegrown produce, primary school's and commercial end uses, using CLEA v1.06 default sandy loam soils, with an organic matter content of 6% and a pH value of 7.0.

Evaluation of health risks from petroleum hydrocarbons has been based on the US Total Petroleum Hydrocarbon Working Group (TPHCWG) approach, extensively used in the UK, as developed in 'The UK Approach for Evaluating Human Health Risks From Petroleum Hydrocarbons in Soils, EA 2005' and 'Principals for Evaluating the Human Health Risks for Petroleum Hydrocarbons in Soils, EA 2003'. The TPHCWG method uses a combination of indicator compounds (surrogates) and 13 petroleum hydrocarbon fractions, representing a range of aliphatic and aromatic TPH's. The indicator compounds represent the most toxic contaminants and those found most frequently at petroleum-hydrocarbon contaminated sites. Priority is given to the assessment of non-threshold indicator compounds likely to be present, including benzene and individual Polyaromatic Hydrocarbons.

Integrale also employ ICRCL 59/83 target values for phytotoxic contaminants boron, copper and zinc as well as Water Regulations Advisory Scheme (WRAS) guidance for the selection of materials for water supply pipes to be laid in contaminated land.

Defra Category 4 Screening Levels are also listed and referred to where appropriate within the planning regime.

May 2015

Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.:	18-30111-1		
Initial Date of Issue:	08-Oct-2018		
Client	Integrale Limited		
Client Address:	Fieldworks Office Unit 7 Westway Farm Business P Wick Road Bishops Sutton BS39 5XP		
Contact(s):	Tom Foll		
Project	1997 Little Crow, Scunthorpe		
Quotation No.:	Q15-03791	Date Received:	02-Oct-2018
Order No.:	1997/0490	Date Instructed:	02-Oct-2018
No. of Samples:	12		
Turnaround (Wkdays):	5	Results Due:	08-Oct-2018
Date Approved:	08-Oct-2018		
Approved By:			

Details: Robert Monk, Technical Manager

Client: Integrale Limited		Che	mtest J	ob No.:	18-30111	18-30111	18-30111	18-30111
Quotation No.: Q15-03791			est Sam		698939	698941	698942	698944
		Cli	ent Sam	ple ID.:	ES1	ES1	ES1	ES1
		Sa	ample Lo	ocation:	TP6	TP10	TP15	TP20
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	0.3	0.1	0.2	0.2
			Date Sa	ampled:	26-Sep-2018	25-Sep-2018	25-Sep-2018	27-Sep-2018
Determinand	Accred.	SOP	Units	LOD				
рН	U	1010		N/A	7.1	6.6	8.0	8.1
Sulphate	U	1220	mg/l	1.0	1.5	66	13	7.2
Cyanide (Total)	U	1300	mg/l	0.050	< 0.050	< 0.050	< 0.050	< 0.050
Sulphide	U	1325	mg/l	0.050	< 0.050	< 0.050	< 0.050	< 0.050
Hardness	U	1415	mg/l	15	29	79	110	87
Arsenic (Dissolved)	U	1450	µg/l	1.0	4.9	< 1.0	3.0	2.0
Boron (Dissolved)	U	1450	µg/l	20	< 20	< 20	20	< 20
Barium (Dissolved)	U	1450	µg/l	5.0	5.6	38	5.9	< 5.0
Beryllium (Dissolved)	U	1450	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cadmium (Dissolved)	U	1450	µg/l	0.080	< 0.080	< 0.080	< 0.080	< 0.080
Chromium (Dissolved)	U	1450	µg/l	1.0	1.2	< 1.0	< 1.0	< 1.0
Copper (Dissolved)	U	1450	µg/l	1.0	2.6	3.6	2.2	< 1.0
Mercury (Dissolved)	U	1450	µg/l	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Nickel (Dissolved)	U	1450	µg/l	1.0	2.3	1.7	1.9	< 1.0
Lead (Dissolved)	U	1450	µg/l	1.0	12	1.3	2.1	< 1.0
Selenium (Dissolved)	U	1450	µg/l	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (Dissolved)	U	1450	µg/l	1.0	5.8	< 1.0	3.0	1.5
Zinc (Dissolved)	U	1450	µg/l	1.0	9.4	7.4	6.6	2.3
Chromium (Trivalent)	N	1490	µg/l	20	< 20	< 20	< 20	< 20
Chromium (Hexavalent)	U	1490	µg/l	20	< 20	< 20	< 20	< 20
Naphthalene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	1700	µg/l	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols	U	1920	mg/l	0.030	< 0.030	< 0.030	< 0.030	< 0.030

Client: Integrale Limited		Che	mtest J	ob No.:	18-30111	18-30111	18-30111	18-30111	18-30111	18-30111	18-30111	18-30111	18-30111
Quotation No.: Q15-03791		Chemte	est Sam	ple ID.:	698934	698935	698936	698937	698938	698939	698940	698941	698942
		Client Sample ID.:		D2	D4	D2	D3	ES1	ES1	ES1	ES1	ES1	
		Sample Location:		TP1	TP2	TP15	TP22	TP1	TP6	TP9	TP10	TP15	
		Sample Type:		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
			Top De	oth (m):	0.5	1.2	0.5	1.0	0.2	0.3	0.2	0.1	0.2
			Date Sa		25-Sep-2018	25-Sep-2018	25-Sep-2018	26-Sep-2018	25-Sep-2018	26-Sep-2018	26-Sep-2018	25-Sep-2018	25-Sep-2018
			Asbest	os Lab:									
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A									
Asbestos Identification	U	2192	%	0.001									
Moisture	N	2030	%	0.020	6.6	23	16	7.9	8.9	9.7	19	14	18
рН	U	2010		N/A	7.2	5.4	8.2	8.5	7.0	7.3	6.6	6.8	7.9
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40					< 0.40	< 0.40	1.2	0.79	1.9
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.079	0.093	0.083	0.053					
Total Sulphur	U	2175	%	0.010	< 0.010	0.10	0.091	0.046					
Sulphur (Elemental)	U	2180	mg/kg	1.0					1.5	1.0	< 1.0	< 1.0	< 1.0
Cyanide (Total)	U	2300	mg/kg	0.50					2.0	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50					< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphate (Total)	U	2430	%	0.010					0.020	0.039	0.12	0.13	0.10
Sulphate (Acid Soluble)	U	2430	%	0.010	0.031	0.061	0.21	0.081					
Arsenic	U	2450	mg/kg	1.0					10	8.8	15	17	36
Barium	U	2450	mg/kg	10					12	13	19	110	64
Beryllium	U	2450	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cadmium	U	2450	mg/kg	0.10					0.12	0.12	0.26	0.16	0.31
Chromium	U	2450	mg/kg	1.0					9.9	9.3	12	24	28
Copper	U	2450	mg/kg	0.50					6.4	4.8	16	13	20
Mercury	U	2450	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50					7.9	5.5	8.7	14	25
Lead	U	2450	mg/kg	0.50					31	22	63	54	62
Selenium	U	2450	mg/kg	0.20					< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0					21	18	29	37	68
Zinc	U	2450	mg/kg	0.50					48	34	77	82	110
Chromium (Trivalent)	N	2490	mg/kg	1.0					9.9	9.3	12	24	28
Chromium (Hexavalent)	N	2490	mg/kg	0.50					< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40					1.7	1.9	6.6	2.8	4.1
Total TPH >C6-C40	U	2670	mg/kg	10									
Naphthalene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10					0.28	< 0.10	0.26	0.12	< 0.10
Pyrene	U	2700	mg/kg	0.10					0.26	< 0.10	0.23	0.14	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Integrale Limited		Che	mtest J	ob No.:	18-30111	18-30111	18-30111	18-30111	18-30111	18-30111	18-30111	18-30111	18-30111
Quotation No.: Q15-03791		Chemte	est Sam	ple ID.:	698934	698935	698936	698937	698938	698939	698940	698941	698942
		Cli	ent Sarr	ple ID.:	D2	D4	D2	D3	ES1	ES1	ES1	ES1	ES1
		Sa	ample Lo	ocation:	TP1	TP2	TP15	TP22	TP1	TP6	TP9	TP10	TP15
			Sampl	e Type:	SOIL	SOIL							
		Top Depth (m):		0.5	1.2	0.5	1.0	0.2	0.3	0.2	0.1	0.2	
		Date Sampled:		25-Sep-2018	25-Sep-2018	25-Sep-2018	26-Sep-2018	25-Sep-2018	26-Sep-2018	26-Sep-2018	25-Sep-2018	25-Sep-2018	
			Asbest	os Lab:									
Determinand	Accred.	SOP	Units	LOD									
Benzo[a]pyrene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0					< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.30					< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

Client: Integrale Limited			mtest J		18-30111	18-30111	18-30111	
Quotation No.: Q15-03791			est Sam		698943	698944	698945	Exceeds GAC Value
			ent Sam		ES1	ES1	ES3	Exceeds WRAS Value
		Sa	ample L		TP17	TP20	TP21	Exceeds Phytotoxic Value
				e Type:	SOIL	SOIL	SOIL	
			Top De	. 、 /	0.1	0.2	1.0	
			Date Sa	-	26-Sep-2018	27-Sep-2018	27-Sep-2018	
				tos Lab:			COVENTRY	
Determinand	Accred.	SOP	Units					
АСМ Туре	U	2192		N/A			-	
Asbestos Identification	U	2192	%	0.001			No Asbestos Detected	
Moisture	N	2030	%	0.020	11	13	27	
рН	U	2010		N/A	8.2	8.2	6.6	
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	1.3	1.2	< 0.40	
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010				
Total Sulphur	U	2175	%	0.010				
Sulphur (Elemental)	U	2180	mg/kg	1.0	< 1.0	< 1.0	3.7	
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	< 0.50	< 0.50	2.8	
Sulphate (Total)	U	2430	%	0.010	0.079	0.062	0.17	
Sulphate (Acid Soluble)	U	2430	%	0.010				
Arsenic	U	2450	mg/kg	1.0	41	22	32	
Barium	U	2450	mg/kg	10	47	37	140	
Beryllium	U	2450	mg/kg	1.0	< 1.0	< 1.0	3.8	
Cadmium	U	2450	mg/kg	0.10	0.29	0.33	0.34	
Chromium	U	2450	mg/kg	1.0	26	17	110	
Copper	U	2450	mg/kg	0.50	13	8.1	15	
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Nickel	U	2450	mg/kg	0.50	23	15	120	
Lead	U	2450	mg/kg	0.50	41	34	52	
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	0.40	
Vanadium	U	2450	mg/kg	5.0	54	31	340	
Zinc	U	2450	mg/kg	0.50	81	60	350	
Chromium (Trivalent)	N	2490	mg/kg	1.0	26	17	110	
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	
Organic Matter	U	2625	%	0.40	3.1	2.8	4.0	
Total TPH >C6-C40	U		mg/kg	10			< 10	
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Fluoranthene	U	2700		0.10	< 0.10	< 0.10	< 0.10	
Pyrene	U	2700		0.10	< 0.10	< 0.10	< 0.10	
Benzo[a]anthracene	U	2700		0.10	< 0.10	< 0.10	< 0.10	
Chrysene	U	2700		0.10	< 0.10	< 0.10	< 0.10	
Benzo[b]fluoranthene	U	2700		0.10	< 0.10	< 0.10	< 0.10	
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	

Client: Integrale Limited	Chemtest Job No.:			18-30111	18-30111	18-30111		
Quotation No.: Q15-03791	Chemtest Sample ID.:			698943	698944	698945	Exceeds GAC Value	
		Cli	ent Sam	ple ID.:	ES1	ES1	ES3	Exceeds WRAS Value
		Sa	ample Lo	ocation:	TP17	TP20	TP21	Exceeds Phytotoxic Value
			Sampl	е Туре:	SOIL	SOIL	SOIL	
			Top Dep	pth (m):	0.1	0.2	1.0	
	Date Sampled:			26-Sep-2018	27-Sep-2018	27-Sep-2018		
			Asbest	os Lab:			COVENTRY	
Determinand	Accred.	SOP	Units	LOD				
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	
Total Of 16 PAH's	U	2700 mg/kg 2.0		< 2.0	< 2.0	< 2.0		
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	

Test Methods

SOP	Title	Parameters included	Method summary		
1010	pH Value of Waters	рН	pH Meter		
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.		
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.		
1325	Sulphide in Waters	Sulphides	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl- pphenylenediamine.		
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).		
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma		
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.		
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GC FID detection		
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemica detection.		
2010	pH Value of Soils	рН	pH Meter		
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.		
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES		
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.		
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection		
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry		
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.		
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.		
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.		
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.		
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600 Discrete Analyser using 1,5-diphenylcarbazide		

Test Methods

SOP	Title	Parameters included	Method summary
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID
2920	Phenols in Soils by HPLC	Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote:	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.:	18-36430-1		
Initial Date of Issue:	27-Nov-2018		
Client	Integrale Limited		
Client Address:	Wick Road Bishop Sutton Bristol Avon BS39 5XP		
Contact(s):	Joseph Begaj		
Project	1997 Little Crow, Scunthorpe		
Quotation No.:		Date Received:	21-Nov-2018
Order No.:	1997/0599	Date Instructed:	21-Nov-2018
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	27-Nov-2018
Date Approved:	27-Nov-2018		
Approved By:			
[redacted]			
Details:	Martin Dyer, Laboratory Manager		

Client: Integrale Limited			mtest J		18-36430	18-36430		
Quotation No.:			est Sam		728122	728123	Exceeds GAC Value	
			ent Sam		ES2	ES3	Exceeds WRAS Value	
		Sa	ample Lo	ocation:	WS9	WS9	Exceeds Phytotoxic Valu	
				e Type:	SOIL	SOIL		
			Top De		1.25	1.75		
			Date Sa		15-Nov-2018	15-Nov-2018		
			Asbest	os Lab:	COVENTRY			
Determinand	Accred.	SOP	Units	LOD				
АСМ Туре	U	2192		N/A	-			
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected			
Moisture	N	2030	%	0.020	28	26		
pН	U	2010		N/A	6.3	5.8		
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.61	0.73		
Sulphur (Elemental)	U	2180	mg/kg	1.0	200	2100		
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50		
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	50	38		
Sulphate (Total)	U	2430	%	0.010	0.36	0.95		
Arsenic	U	2450	mg/kg	1.0	48	81		
Barium	U	2450	mg/kg	10	74	35		
Beryllium	U	2450	mg/kg	1.0	2.6	2.6		
Cadmium	U	2450	mg/kg	0.10	< 0.10	< 0.10		
Chromium	U	2450		1.0	93	170		
Copper	U	2450	mg/kg	0.50	7.7	8.8		
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10		
Nickel	U	2450	mg/kg	0.50	110	82		
Lead	U	2450	mg/kg	0.50	35	32		
Selenium	U	2450	mg/kg	0.20	0.45	0.49		
Vanadium	U	2450	mg/kg	5.0	350	420		
Zinc	U	2450	mg/kg	0.50	230	230		
Chromium (Trivalent)	N	2490	mg/kg	1.0	93	170		
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50		
Organic Matter	U	2625	%	0.40	9.2	10		
Total TPH >C6-C40	U	2670	mg/kg	10	< 10	53		
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10		
Dibenz(a,h)Anthracene	U		mg/kg	0.10	< 0.10	< 0.10		

Client: Integrale Limited		Che	mtest J	ob No.:	18-36430	18-36430	
Quotation No.:	Chemtest Sample ID.:		728122	728123	Exceeds GAC Value		
		Cli	ent Sam	ple ID.:	ES2	ES3	Exceeds WRAS Value
	Sample Location:			WS9	WS9	Exceeds Phytotoxic Value	
	Sample Type:			SOIL	SOIL		
	Top Depth (m):			1.25	1.75		
			Date Sa	ampled:	15-Nov-2018	15-Nov-2018	
			Asbest	os Lab:	COVENTRY		
Determinand	Accred.	SOP	Units	LOD			
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Total Of 16 PAH's	U	U 2700 mg/kg 2.0		< 2.0	< 2.0		
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30	

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

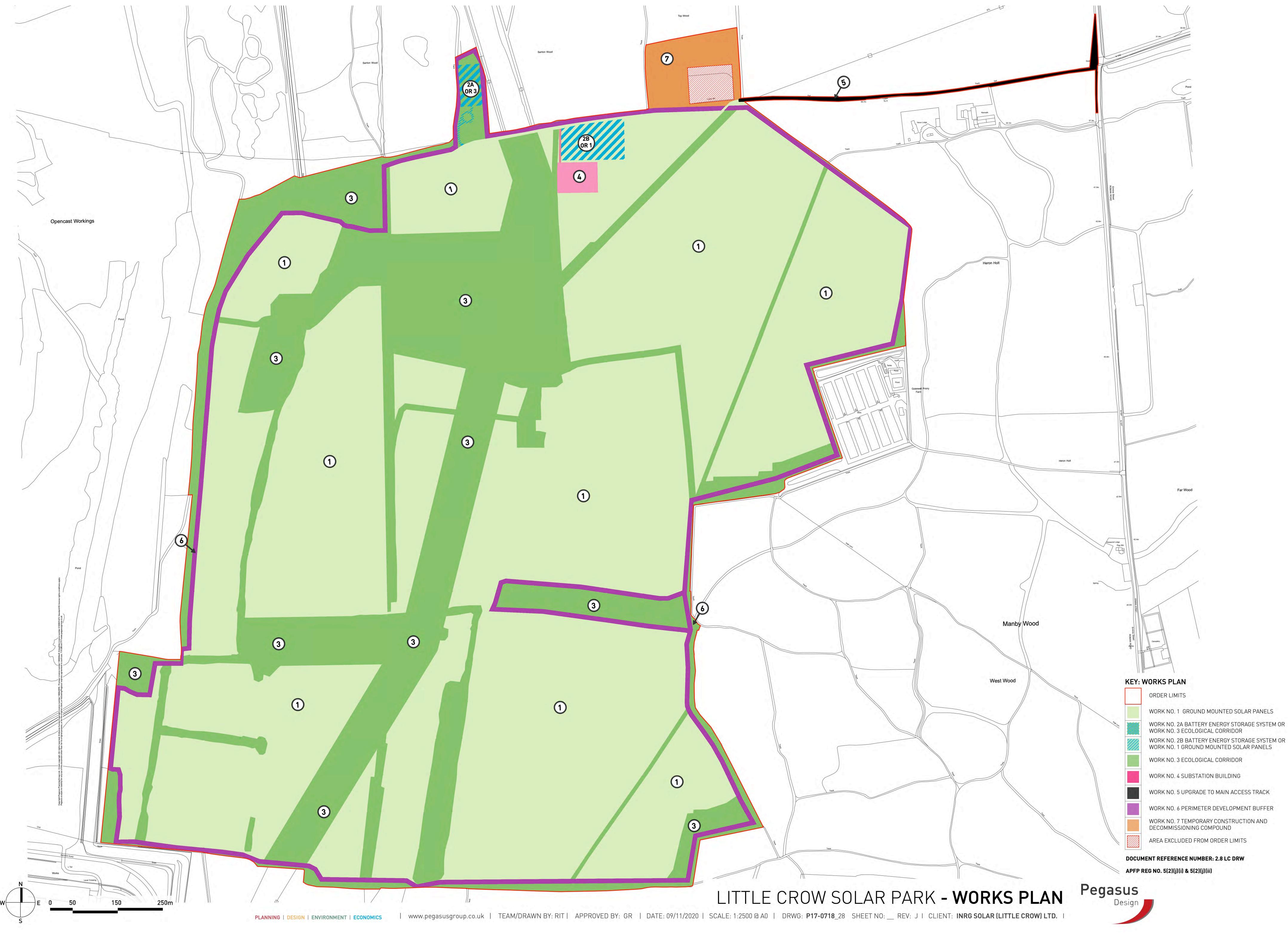
Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>


Appendix J

Proposed Redevelopment

GEOLOGICAL • GEOTECHNICAL • ENVIRONMENTAL • ENGINEERING

Integrale Limited, Suite 7, Westway Farm Business Park, Wick Road, Bishop Sutton, Somerset, BS39 5XP United Kingdom Tel: 01275 333 036 www.integrale.uk.com

Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX United Kingdom VAT Reg. No. 609 7402 37

